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Abstract

This thesis addresses two issues that arise in restricted complexity estimation problems: The first

is estimation subject to rank constraints. The second corresponds to uncertainty quantification

when the amount of data available is small relative to the number of variables to be estimated.

In many practical problems one wishes to choose a simple solution from a set of possible solutions.

The reasons for this can be many fold. For example, in design problems, one may know that a

simple solution is possible. However, one does not know how to obtain such a simple solution from

a large set of possible alternatives. In estimation problems, one may deliberately restrict the set of

possible solutions to avoid over-fitting of noisy data. We term the class of problems having simple

solutions restricted complexity problems.

The first part of the thesis address restricted problems where the restriction on complexity can be

related to constraining the rank of a particular matrix. This leads us to address rank-constrained

optimization problems.

The second part of the thesis focuses on quantification of estimation-error. It is well known that,

when the amount of data available for estimation is small, the variance error could be significantly

large. In these circumstances it is beneficial to, not only, have an estimated value for the parameters

but also to be able to quantify the associated error. However, most of the existing methods for error

quantification rely upon asymptotic results with large data. We focus on parametric uncertainty

quantification for finite data estimation, with an extension to the related problem of moving horizon

estimation.

The third part of the thesis, focuses on quantification of estimation errors when the complexity of

the model is deliberately chosen to be smaller than the complexity of the “true” model. This has

motivated a novel approach, commonly known in the literature by the generic title “model error

modelling”, to uncertainty quantification. This has been a central theme in several areas including

statistics, time series analysis, econometrics and system identification. In the third part of the

thesis we address the problem of model error modelling for dynamic system identification.
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1

Introduction

This thesis addresses two issues that commonly arise in restricted complexity estimation prob-

lems. The first issue is estimation subject to rank constraints. The second issue corresponds to

uncertainty quantification. Both issues are connected to the bias-variance trade off problem.

In any estimation problem, there exists a bias-variance tradeoff. The bias-variance tradeoff has

two competing aspects: (i) When the nominal model is less complex than the true model, then

systematic errors arise since the nominal model cannot reproduce all of the dynamics of the true

system. These errors are usually called “bias errors”. (ii) On the other hand, choosing a more

complex model may cause the estimated parameters to follow the characteristics of the particular

noise realization. This leads to a variance error.

Choosing the model complexity that provides the right balance between Bias and Variance errors

is a difficult task. In past literature, several tools has been developed to deal with the problem

of choosing the right complexity. For example the, well known, Akaike information Criterion and

the Bayesian Information Criterion address this issue [4, 97]. These criteria are aimed at finding

the model complexity that provides the right balance between bias and variance errors. In recent

years, the research focus has changed from finding the right model complexity to that of managing

the balance between model complexity and estimation error [48]. In this context, regularization

techniques are powerful tools to manage the bias-variance tradeoff. Regularization techniques deal

with the complexity issue by adding a penalty term to the cost function. This extra term penalizes

model complexity. Optimization in the presence of these extra terms, produces a tendency to

choose models having reduced complexity.

Once the model complexity has been chosen, including prior information of the chosen complexity

in the estimation problem is also not straightforward. In most applications, the complexity of the

nominal model is managed by using the specific structure of the problem. However, there are many
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associated difficulties. In many applications the notion of model complexity can be related to the

rank of a particular matrix. In the first part of the thesis, we focus on estimation problems that

can be formulated as rank-constrained optimization problems. We develop novel algorithms and

analyze their behaviour.

Rank-constrained optimization finds application in many areas including data modelling, systems

and control, computer algebra, signal processing, psychometrics, machine learning, computer vision

among others [71]. In many of these applications, the rank of a matrix is related to the complexity

of a model. For example, in system identification, the order of a rational system is equal to the

rank of an infinite dimensional Hankel matrix. In factor analysis, the number of latent factors is

equal to the rank of a covariance matrix. These and other areas of application will be studied in

the thesis.

The second part of the thesis focuses on quantification of estimation-error. It is well known that,

when the amount of data available for estimation is small, variance errors can be significantly large.

Thus, knowledge of the parametric uncertainty becomes a significant issue. However, most of the

existing methods for error quantification rely upon asymptotic results. Moreover, for state estima-

tion methods, there exist several methods that provide estimates without any accuracy information

at all. Thus, in the second part of the thesis, we focus on parametric uncertainty quantification

for finite data estimation. We also extend these ideas to the related problem of moving horizon

estimation. Moving horizon estimation transforms filtering, smoothing and prediction problems

into a set of standard constrained optimization problems over a finite horizon. In order to limit

the size of the problem, this technique requires that the range of data used for estimation be small.

In turn, when new data arrives, the oldest data is summarized by a, so called, “arrival cost”. We

will use the approach described earlier for error quantification on finite data problems, to provide

an arrival cost for the moving horizon estimation problem.

The third part of the thesis, focuses on quantification of estimation errors when the complexity

of the model is deliberately chosen to be smaller than the complexity of the “true” model. The

modelling of the model uncertainty has been a central theme in many areas such as statistics, time

series analysis, econometrics and system identification. We focus on modelling the model uncer-

tainty in dynamic models. In particular, we model the uncertainty as a realization of a stochastic

process. In the third part of the thesis we study the problem of modelling the model uncertainty for

dynamic system identification and develop a novel scheme for simultaneously estimating a nominal

model and quantifying the model uncertainty.
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1.1 Overview of Thesis Content

An outline of the remaining chapters of the thesis is given below.

Part I Model Complexity Management

• Chapter 2 addresses the problem of optimization subject to rank constraints. We

propose a general approach to rank-constrained optimization. This approach provides

enough flexibility to handle additional convex constraints.

• Chapter 3 applies the method outlined in Chapter 2 to Factor Analysis. We pro-

pose a novel approach to Factor Analysis which allows one to consider cross-correlated

idiosyncratic errors.

• Chapter 4 extends the results of Chapter 2 to general matrices, i.e. not necessarily

positive semi-definite matrices.

• Chapter 5 applies the method described in Chapter 4 to the problem of impulse re-

sponse estimation. The efficacy of the proposed approach is studied via a numerical

example.

• Chapter 6 extends the results in Chapter 4 to the problem of cardinality-constrained

optimization. We explore the ability to include group constraints into the cardinality-

constrained optimization problem. We also develop an algorithm to solve cardinality-

constrained optimization problems. This algorithm is based on the general framework

for constrained optimization called Augmented Lagrangian methods.

• Chapter 7 applies the method outlined in Chapter 6 to Model Predictive Control. We

propose the design of quadratic model predictive control controllers subject to cardinal-

ity constraints on each control horizon.

Part II Estimation-Error Quantification

• Chapter 8 proposes a novel method for estimation-error quantification for finite data

estimation. The proposed method combines Maximum A Posteriori and Bayesian esti-

mation techniques. The method provides a solution to the error quantification problem.

• Chapter 9 applies the method developed in Chapter 8 to Moving Horizon Estimation.

The proposed method provides a possible solution to the problem of computation of an

entry cost.

Part III Modelling Model Uncertainty
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• Chapter 10 proposes a novel method for the problem of modelling model uncertainty.

In this chapter, we propose a systematic methodology to describe a broad class of model

uncertainties. This approach allows one to simultaneously estimate the nominal model

and the associated uncertainty.

• Chapter 7 draws conclusions and describes possible future research directions.

1.2 Publications by the Author

1. Referred journals

(a) Directly related to the content of the thesis:

i. R.A. Delgado (40%), J.C. Agüero (40%) and G.C. Goodwin (20%), “ On Rank-

Constrained Optimization,” Submitted to Automatica.

ii. R.A. Delgado (60%) and G.C. Goodwin (40%), “A Combined MAP and Bayesian

Scheme for Finite Data and/or Moving Horizon Estimation” Automatica, Vol

50(4):1116-1121, April 2014

(b) Other journal publications by the author having indirect relationship to the thesis:

i. J.C. Agüero, W. Tang, J.I. Yuz, R.A. Delgado and G.C. Goodwin. “ Dual time-

frequency domain system identification” Automatica, Vol 48(12):3031-3041, Dec

2012.

ii. J.C. Agüero, J.I. Yuz, G.C. Goodwin, and R.A. Delgado. “On the equivalence

of time and frequency domain maximum likelihood estimation” Automatica, Vol

46(2):260-270, Feb 2010.

2. Refereed conferences

(a) Directly related to the content of the thesis

i. R.A. Delgado (35%), J.C. Agüero (35%) and G.C. Goodwin (30%) “A Rank-

Constrained Optimization Approach: Application to Factor Analysis.” In 19th

IFAC World Congress, Cape Town, South Africa, 2014

ii. R.P. Aguilera (25%), R.A. Delgado (25%), D. Dolz (25%) and J.C. Agüero (25%).

“Quadratic MPC with `0-input constraint,” In 19th IFAC World Congress, Cape

Town, South Africa, 2014
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iii. R.A. Delgado (35%), G.C. Goodwin (25%), R. Carvajal (20%) and J.C. Agüero

(20%). “A Novel Approach to Model Error Modelling using the Expectation-

Maximization Algorithm” In 51st IEEE Conference on Decision and Control (CDC),

Maui, USA, 2012

(b) Other conference publications by the author having indirect relationship to the thesis

i. R. Carvajal, R.A. Delgado, J.C. Agüero and G.C. Goodwin. “An Identification

Method for Errors-In-Variables Systems Using Incomplete Data,” In 16th IFAC

Symposium on System Identification, Brussels, Belgium, 2012

ii. R.A. Delgado, G.C. Goodwin and A. Feuer. “An on-line MUSIC algorithm with

application to sparse signal reconstruction,” In 20th International Symposium on

Mathematical Theory of Networks and Systems (MTNS), Melbourne, Australia,

2012

iii. R.A. Delgado, J.C. Agüero, G.C. Goodwin and J.I. Yuz. “Two-degree-of-freedom

anti-aliasing technique for wide-band networked control.” In 18th IFAC World
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Supervisor
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2

Rank-Constrained Optimization

2.1 Introduction

In this chapter we focus on methods to manage the complexity of a nominal model for a certain

class of design and estimation problems. The complexity of the nominal model can be handled

by several strategies. In most applications the complexity of the nominal model is managed by

using the specific structure of the problem. We focus on applications where the complexity of the

nominal model can be related to the rank of a particular matrix. More specifically, we focus on

solving estimation problems where the estimation problem can be formulated as a rank-constrained

optimization problem. We propose a general approach to rank-constrained optimization. This

approach provides enough flexibility to handle additional convex constraints.

Rank-constrained optimization finds application in many areas including data modelling, systems

and control, computer algebra, signal processing, psychometrics, machine learning, computer vision

among others [71]. In many applications, the rank of a matrix is related to the complexity of a

model. For example, in system identification, the order of a rational system is equal to the rank

of an infinite dimensional Hankel matrix. In factor analysis the number of latent factors is equal

to the rank of a covariance matrix. These and other areas of application will be studied in later

chapters.

Rank-constrained optimization problems are known to be difficult, since they are inherently com-

binatorial in nature. Thus, there is no general procedure for solving them [69]. On the other

hand, there exists a huge range of publications aimed at solving specific rank-constrained prob-

lems. In most problems, the rank-constraint is handled by taking advantage of the structure of

the specific problem. For example, one approach to handle rank-constraints is based on Rieman-

nian manifold optimization. This idea has been applied to linear regression [76], and to solving
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Lyapunov equations [109]. Other methods use a greedy selection approach such as GECO [98] and

ADMiRA [62]. Newton-like algorithms have also been developed aimed at solving Linear Matrix

Inequalities subject to rank constraints [81]. Also, variable projection-type algorithms have been

applied to structured low-rank approximation problems [72].

Rank-Constrained optimization problems are closely related to Rank-Minimization problems. Rank-

Minimization problems have received increasing attention over the past few decades. The focus

has centred on various approximations such as trace, nuclear norm and log-det heuristics (see

e.g. [37–39]). There also exist some approaches that solve a Rank-Minimization problem exactly,

see e.g [28], but the computational complexity is formidable even for small-size problems. Most

heuristics developed for Rank-Minimization problems can be applied to Rank-Constrained prob-

lems. However, in these heuristics, the condition on the rank is not considered as a hard constraint.

A novel approach to dealing with rank constraints has been proposed in [28, 29, 59, 104]. The

main idea is to exploit the fact that, for an n × n positive semidefinite matrix A, imposing the

rank constraint rank {A} ≤ r is equivalent to imposing the constraint that the sum of the n − r

smallest eigenvalues of A is equal to zero. This approach is an effective mechanism for imposing

rank constraints. However, the idea has not been widely adopted. The methodology developed in

the current chapter builds on this circle of ideas. In particular, we propose an approach to solve

convex optimization problems subject to rank constraints. A key contribution of the work presented

here is the fact that we consider rank constraints for general (i.e. not necessarily positive semi-

definite) matrices. Our approach allows one to constrain the rank of a matrix whilst minimizing

a cost function. The proposed approach is also applicable to the related problem of cardinality-

constrained optimization.

The layout of the remainder of the chapter is as follows: In Section 2.2, we formulate the problem

of interest. Section 2.3 revisits existing results. In Section 2.4, the proposed approach is presented.

Finally, conclusions are drawn in Section 2.5.

Notation and basic definitions: rank {A} denotes the rank of a matrix A. λi(A) denotes the i-th

largest eigenvalue of a matrix A, A ◦B denotes the Hadamard product of A and B, A � 0 denotes

that A is positive semidefinite, and A � B denotes that A−B � 0. We represent the transpose of

a given matrix A as A>. Sn denotes the set of symmetric matrices of size n× n, and Sn+ the set of

symmetric positive semidefinite matrices, i.e. Sn+ := {A ∈ Sn|A � 0}. 1 denotes a vector with only

ones as entries. ‖‖F denotes the Frobenius norm. En(i, j) denotes to a n × n matrix with zeroes

in all its entries except in entry (i, j) which has value Enij = 1.
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2.2 Problem Description

Consider the following rank-constrained optimization problem

Prco : min
θ∈Rp

f(θ)

subject to θ ∈ Ω

rank {G(θ)} ≤ r

G(θ) ∈ Sn+

where Ω ⊂ Rp is a convex set, f(θ) : Rp → R and G(θ) : Rp → Sn+ are such that θ belongs to a

convex set.

The rank-constrained optimization problem Prco is known to be difficult, since it is combinatorial

in nature. Also, notice that Prco also covers some optimization problems subject to cardinality

constraints. This is achieved, by considering G(θ) to have a diagonal structure. This latter aspect

will be explained in detail in chapter 6.

The condition G(θ) ∈ Sn+ can be relaxed in order to consider general non-square real matrices,

G(θ), as shown later in chapter 4. However, for the sake of simplicity this generalization is not

considered in the current chapter.

There is a large number of optimization problems that can be described by problem Prco. Examples

include, Factor Analysis and several System Identification problems. These specific cases will be

addressed later in the thesis.

2.3 Existing Results

Although problem Prco is, in general, difficult there are several special cases where a solution

can be efficiently obtained. One such case is the unconstrained low-rank approximation problem,

where the Eckart-Young Theorem [36] provides a closed form solution

Theorem 2.3.1. [36] Given a matrix X ∈ Rm×n, the goal is to find

X̂ = arg min
Z
‖X − Z‖F s.t rank {Z} ≤ r

The solution is given by the truncated Singular Value Decomposition, SVD, i.e. if X = USV >

is a SVD of X, then the minimizer is given by X̂ = U1:rS1:r,1:rV
>
1:r where U1:r denotes the first

r columns of U , and S1:r,1:r denotes the submatrix composed of the first r rows and the first r
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columns of S, i.e. the submatrix containing the r-largest singular values of X. The minimiser X̂

is unique if and only if σr+1 6= σr.

The Eckart-Young Theorem has become the cornerstone of most existing approaches to rank con-

strained optimization. One of the main reasons for this choice is that an SVD can be computed in

an efficient and numerically robust way. However, for other problems such as structured low-rank

approximation, the SVD-based methods can be seen as a relaxation of the original rank-constrained

problem [69].

Another approach to impose rank constraints has been followed by several authors [29, 59, 104].

These ideas are also related to the method first presented in [28]. The underlying idea of these

methods is that, for a matrix G ∈ Sn+, imposing the rank constraint rank {G} ≤ r is equivalent to

imposing the constraint that the sum of the n− r smallest eigenvalues of G is equal to zero.

In order to describe the approach in more detail, consider the following definition

Φn,r = {W ∈ Sn, 0 �W � I, trace(W ) = n− r} (2.1)

This set corresponds to the convex hull of the rank-(n-r) projection matrices [29].

The set Φn,r can be used to compute the sum of the (n − r)-smallest eigenvalues. The following

lemma establishes the connection.

Lemma 2.3.1. Consider G ∈ Sn whose eigenvalues are λ1(G) ≥ · · · ≥ λn(G), and r ∈ {1, 2, . . . , n}

then

n∑
i=r+1

λi(G) = min
W∈Φn,r

trace(W>G)

Proof. Direct from [82, Theorem 3.4] and by considering that

n∑
i=r+1

λi(G) = trace(G)−
r∑
i=1

λi(G)

. �

The above result leads to the following optimization problem for finding the (n − r) smallest

eigenvalues:

P1 : min
W∈Φn,r

trace(W>G)
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Problem P1 has a closed-form solution. In fact, let us consider the diagonalisation G = QΛQ>,

then the direction matrix W = UU> is optimal, where U corresponds to the directions of Q

corresponding to the n− r smallest entries of the diagonal matrix Λ.

The conditions under which the solution to P1 is zero are interesting. Specifically, the equivalence

between imposing the constraint rank {G} ≤ r and requiring that
∑n
i=r+1 λi(G) = 0, is given by

the following result:

Lemma 2.3.2. The rank of a matrix G ∈ Sn+ is less than r, if and only if, there exists a W ∈ Φn,r,

such that

trace(W>G) = 0 (2.2)

Proof. From Lemma 2.3.1 we have that

n∑
i=r+1

λi(G) ≤ trace(W>G) (2.3)

Since G ∈ Sn+, we have that
∑n
i=r+1 λi(G) ≥ 0. Then, (2.2) provides a sufficient condition for

rank {G} ≤ r. The necessity of (2.2) follows from the equality between the sum of the (n-r)

smallest eigenvalues of G and the optimal value of the cost function in problem P1 established in

Lemma 2.3.1. �

In [29] Lemma 2.3.1 and Lemma 2.3.2 have been used to solve the following rank-constrained

feasibility problem

Pfeas : find
G∈Sn+

G

subject to G ∈ Ω

rank {G} ≤ r,

where Ω is a convex set. One of the contributions in [29] is to reformulate the above rank-

constrained feasibility problem Pfeas, as the following minimization problem.

P2 : min
G∈Sn+

min
W∈Φn,r

trace(W>G)

subject to G ∈ Ω

Problem P2 can be (locally) solved by iteratively alternating minimization1 between G and W .

Specifically, given a current estimate Ĝm of G, at iteration m, then the optimization update is as

1This alternating minimization scheme, is also known as Alternate Convex Search, see e.g. [51].
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follows:

Ŵm+1 = arg

{
min

W∈Φn,r

trace(W>Ĝm)

}
(2.4)

Ĝm+1 = arg

{
min
G∈Sn+

trace((Ŵm+1)>G) s.t G ∈ Ω

}
(2.5)

If condition (2.2) is reached then this indicates that the feasibility problem Pfeas has been solved.

However, the term trace(W>G) is multimodal. As a consequence, it follows that the alternating

minimization (2.4)-(2.5) cannot be guaranteed to converge, in general, to the global minimum

of P2, see e.g [51, §4]. Hence, the inability to obtain a solution via alternating minimization to

(2.4)-(2.5) satisfying (2.2) does not imply the non-existence of such a solution.

It is worth mentioning that iterations of alternating minimization (2.4)-(2.5) can be easily imple-

mented using standard optimization software such as CVX [52] or YALMIP [67].

2.4 An alternative representation for Rank-Constrained Op-

timization

In this section we describe an equivalent representation for the rank-constrained optimization

problem Prco. Also, we analyze several strategies to solve this alternative representation of Prco.

The optimization problem Prco is equivalent to the following optimization problem with bilinear

constraint.

Pbi : min
θ∈Rp

min
W∈Sn

f(θ)

subject to θ ∈ Ω

trace(G(θ)>W ) = 0

G(θ) ∈ Sn+

W ∈ Φn,r

A difficulty is that Problem Pbi is non-convex due to the presence of the bilinear constraint

trace(G(θ)>W ) = 0. However, this reformulation allows one to use several optimization tools,

including local and global optimization methods.

In the following sections we explore some local and global optimization techniques to solve Pbi.
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2.4.1 Local Optimization

In this section, we describe a local optimization algorithm to solve the Rank-Constrained Opti-

mization problem Prco. In this approach, we reformulate Prco as the optimization problem Pbi.

Problem Pbi can be solved by using an iterative procedure that, in each iteration, solves a feasibil-

ity problem. In more detail, let θm ∈ Ω be the current estimate for θ ∈ Ω, at iteration m. Then,

problem Pbi can be solved, by iteratively solving the following related feasibility problem

Pinner : min
θ∈Rp

min
W∈Sn

trace(W>G(θ))

subject to f(θ) ≤ f(θm−1)(1− ηm)

θ ∈ Ω

G(θ) ∈ Sn+

W ∈ Φn,r

where 0 < ηm < 0.5 is a parameter chosen by the user. If the feasibility problem Pinner cannot

be solved, we set ηm+1 = 0.5ηm and proceed with the algorithm, until problem Pinner cannot be

solved for any ηm above some specified lower bound.

In the method described above, the speed of convergence is controlled by the value of ηm > 0. Note

that, choosing an ηm > 0 in Pinner is a mechanism to reduce f(θ) by a non-negligible amount at

each step. An algorithm based on this idea to solve problem Prco, is described in Algorithm 2.1

(see Table).

Minimization of the objective function trace(W>G(θ)) is difficult, due to its multimodal nature.

The presence of a bilinear term in the objective function has been well-studied in the literature,

(see e.g. [5, 41, 51]). It is well-known, for example, that an alternating minimization scheme does

not necessarily converge to the global optimum of such an objective function [51, §4]. However,

in many areas, the provably sub-optimal solution provided by alternating minimization is good

enough to satisfy the requirements of the problem. For example, in chapter 3, a problem in the

form of Pinner will be solved using an alternating minimization scheme. The results obtained by

that procedure are competitive with the results obtained by other state-of-the-art algorithms.

2.4.2 Global Optimization

In this section, we investigate global approaches to solve problem Pinner. Several general op-

timization methods can be applied such as, multi-start local optimization, simulated annealing,
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Algorithm 2.1 Rank-constrained optimization algorithm.

Input: 0 < η0 ≤ 0.5

Input: θ0 ∈ Ω such that rank
{
G(θ0)

}
≤ r

m← 0

while ηm ≥ Tolerance do

Solve problem Pinner.

if in Pinner (trace(W>G(θ)) ≤ εfeasible) then

Denote the solution as θm+1

ηm+1 ← ηm

else

θm+1 ← θm

ηm+1 ← 0.5ηm

end if

m← m+ 1

end while

return θ = θm

among others. However, these randomized methods do not ensure (deterministic) convergence

to a global optimum. On the other hand, deterministic global optimization methods, such as

branch-and-bound methods do guarantee convergence to the global optimum. Thus, we propose a

global optimization procedure to solve a variant of Pinner. The procedure is a branch-and-bound

algorithm that solves the following optimization problem. Given G,G,W,W ∈ Sn, solve

P4 : min
θ∈Rp

min
W∈Sn

trace(W>G(θ))

subject to f(θ) ≤ f(θm−1)(1− ηm)

θ ∈ Ω

W ∈ Φn,r

G(θ) ∈ Sn

W i,j ≤Wi,j ≤W i,j

Gi,j ≤ G(θ)i,j ≤ Gi,j

i, j = 1, . . . , n
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Notice that the main difference between P4 and Pinner is that P4 is constrained to the hyper-

rectangle

Q :={θ ∈ Rp,W ∈ Sn|G(θ) ∈ Sn,

W i,j ≤Wi,j ≤W i,j , Gi,j ≤ G(θ)i,j ≤ Gi,j

,∀i, j ∈ {1, . . . , n}}

(2.6)

The additional upper and lower bounds on G(θ) and W , allow one to derive a lower bound for the

term trace(W>G(θ)), required for the development of a branch-and-bound algorithm. Note that

the use of branch-and-bound algorithms to minimize bilinear objective function is not new, see for

example [5, 41].

Remark 2.4.1. Existing methods that exploit (similar results to) Lemma 2.3.1 and Lemma 2.3.2

[29, 59, 104] do not address the fact that the term trace(W>G) requires a global optmization

procedure. In [28] the issue of global optimization is addressed for the related problem of rank-

minimization. The global optimization method used in the latter work is based on a Sum-of Squares

approach. However, it is reported in [28] that the computational complexity of the algorithm is ex-

cessively large even for small size problems.

In the following section we describe a branch-and-bound implementation to solve P4.

Branch-and-Bound Algorithm

Branch-and-Bound is a general procedure for solving global optimization problems. Branch-and-

bound has been applied in several areas, but is particularly important in mixed integer program-

ming and in other problems of a combinatorial nature; see [17,26] for a general description and [27]

for a historical review.

Branch-and-Bound algorithms find the global minimum of a function h : Rm → R over a hyper-

rectangle Q0. Let Q ⊆ Q0, and consider

ϕ(Q) = min
θ∈Q

h(θ)

The branch-and-bound algorithm then computes ϕ(Q0), by using two functions ϕlb(Q) and ϕub(Q)

that provide a lower and upper bound of ϕ(Q), i.e.

ϕlb(Q) ≤ ϕ(Q) ≤ ϕub(Q)

The two bounding functions, ϕub(Q) and ϕlb(Q), must satisfy (ϕub(Q)−ϕlb(Q))→ 0 as the size of

Q goes to zero. A branch-and-bound algorithm begins by partitioning the initial hyper-rectangle
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Q0 into the union of p0 hyper-rectangles, i.e. Q0 = ∪p0q=1Qq. This partition of Q0 is subsequently

refined in a sequence of stages. At stage k, the initial hyper-rectangle has been partitioned as

Q0 = ∪pkq=1Qq, where

min
1≤q≤pk

ϕlb(Qq) ≤ ϕ(Q0) ≤ min
1≤q≤pk

ϕub(Qq)

The upper and lower bounds are improved in subsequent stages. The branch-and-bound algorithm

stops when the difference between the upper and lower bound is less than or equal to a given

tolerance constant δ, i.e.

min
1≤q≤pk

ϕub(Qq)− min
1≤q≤pk

ϕlb(Qq) ≤ δ

The choice of the bounding functions ϕub(Q) and ϕlb(Q) has a significant impact on the perfor-

mance of the branch-and-bound algorithm. Typically, the upper bound ϕub(Q) is obtained via

an easy-to-compute suboptimal solution for ϕ(Q). However, finding an appropriate lower bound

function, ϕlb(Q), is a difficult task. Another important step in developing a branch-and-bound

algorithm, is choosing a hyper-rectangle, Qj , over which the partition will be refined at each stage.

A commonly used criterion is to choose the hyper-rectangle having lowest value of ϕlb(Qj). Thus,

the branch-and-bound algorithm focuses on refining the partition on the most promising parts of

Q0. Under this criterion, no superfluous bound calculations take place after the optimal solution

has been found [26], i.e. when ϕub(Qj) = ϕ(Q0) for a Qj ⊂ Q0.

To apply this idea to Problem P4 we need to find a suitable lower bound for the term trace(W>G(θ)).

To do this we utilize the ideas presented in [73] to construct convex under-estimators. In particular,

we will use the following result

Theorem 2.4.1. [5]

Let Ξ := {x ≤ x ≤ x, y ≤ y ≤ y} ⊂ R2.

Then

x y ≥ x y + x y − x y (2.7)

x y ≥ x y + x y − x y (2.8)

Proof. See [5]. �

Then, a lower bound for the term trace(W>G(θ)) can be found by considering the fact that

trace(G>W ) = 1>(G ◦W )1, and that each entry of G and W is bounded from above and below,

i.e. Gij ≤ Gij ≤ Gij and W ij ≤Wij ≤W ij .
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The above argument leads to the following bounding function over Q

ϕlb(Q) := min
θ∈Rp

min
W,Z∈Sn

1>Z1

subject to f(θ) ≤ ηm

θ ∈ Ω

W ∈ Φn,r

(θ,W ) ∈ Q

(G(θ))ijW ij +GijWij −GijW ij ≤ Zij

(G(θ))ijW ij +GijWij −GijW ij ≤ Zij

∀i, j ∈ {1, . . . , n}

ϕub(Q) := trace(W>G(θ)) | (θ,W ) = argϕlb(Q) (2.9)

One can then use any suitable branch-and-bound algorithm.

The final branch-and-bound method used to solve problem P4 is described in Algorithm 2.2 (see

Table).

In Algorithm 2.2, the partitioning of Q into Qa, Qb, Qc and Qd, is achieved by splitting by half

along the longest “G-width” dg = maxi,j(Gij − Gij), with optimal arguments (ig, jg). Also, by

splitting by half along the longest “W-width” dw = maxi,j(W ij −W ij), with optimal arguments

(iw, jw).

We denote by G,G,W,W the bounds that determineQ, and denote by Ga, G
a
,W a,W

a
the bounds

that determine Qa. In an analogous fashion we define bounds for Qb, Qc and Qd. Then, we set

the upper and lower bound on each hyper-rectangle as

Ga = G+
dg
2 E

n(ig, jg) ; G
a

= G

W a = W ; W
a

= W − dw
2 E

n(iw, jw)

Gb = G+
dg
2 E

n(ig, jg) ; G
b

= G

W b = W + dw
2 E

n(iw, jw) ; W
b

= W

Gc = G ; G
c

= G− dg
2 E

n(ig, jg)

W c = W ; W
c

= W − dw
2 E

n(iw, jw)

Gd = G ; G
d

= G− dg
2 E

n(ig, jg)

W d = W + dw
2 E

n(iw, jw) ; W
d

= W



20 2. Rank-Constrained Optimization

Algorithm 2.2 Branch and Bound algorithm to solve P4.

Input: Q0: Initial hyper-rectangle

L ← {Q0}

UB ← ϕub(Q0)

LB ← ϕlb(Q0)

while UB > εfeasible and L 6= ∅ do

Select Q ∈ L with the such that ϕlb(Q) = LB.

Split Q into Qa,Qb,Qc and Qd, along the longest edges.

L ← {L −Q} ∪ {Qa,Qb,Qc,Qd}

LB ← minQ∈L ϕlb(Q)

UB ← minQ∈L ϕub(Q)

Qopt ← {Q ∈ L|ϕub(Q) = UB}

Eliminate from L all {Q ∈ L|ϕlb(Q) > εfeasible}

end while

if L = ∅ then

Qopt = ∅

end if

return Qopt
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Improving the lower bound function

The branch-and-bound algorithm described above requires an upper and a lower bound for each

entry in W and G(θ). These bounds are used to compute a lower bound function ϕlb(Q). In

rank-constrained optimization problems, constraints on the eigenvalues naturally appear, such as,

0 �W � I. In problems such as Factor Analysis, this kind of constraint also appears on G(θ). In

this chapter, the general method presented in [73] is used to construct a convex under-estimator

of trace(G>W ), based on constraints on the positive semidefinite cone.

We first revisit the following known results.

Fact 2.4.1. [12, Fact 8.21.12] Let G,W ∈ SN+ . Then (G ◦W ) ∈ SN+

Fact 2.4.2. [12, Fact 7.6.9] Let G,W ∈ Rm×n. Then trace(G>W ) = 1>(G ◦W )1

The following result is useful in providing a tight lower bound function ϕlb(Q).

Theorem 2.4.2. Let GL, GU , G,WL,WU ,W ∈ Sn be such that

G−GL ∈ Sn+ W −WL ∈ Sn+ (2.10)

GU −G ∈ Sn+ WU −W ∈ Sn+ (2.11)

Then

trace(G>W ) ≥ 1T (G ◦WL +GL ◦W −GL ◦WL)1 (2.12)

trace(G>W ) ≥ 1T (G ◦WU +GU ◦W −GU ◦WU )1 (2.13)

Proof. From Fact 2.4.1, and (2.10) we have that

(G−GL) ◦ (W −WL) ∈ Sn+ (2.14)

which, after expanding terms, gives

G ◦W − (G ◦WL +GL ◦W −GL ◦WL) ∈ Sn+ (2.15)

The same procedure can be used with (2.11) to obtain

G ◦W − (G ◦WU +GU ◦W −GU ◦WU ) ∈ Sn+ (2.16)

from the definition of a positive semidefinite matrix, A � 0 if and only if x>Ax ≥ 0, ∀x. Consider

x = 1, then from (2.15) we have that

1>(G ◦W − (G ◦WU +GU ◦W −GU ◦WU ))1 ≥ 0 (2.17)



22 2. Rank-Constrained Optimization

by rearranging and considering Fact 2.4.2 we obtain (2.12). The same procedure can be used with

(2.16) to obtain (2.13). �

Thus, if constraints (2.10)-(2.11) are present in the problem P4, the following constraints can be

included when computing ϕlb(Q)

G ◦WU +GU ◦W −GU ◦WU � Z (2.18)

G ◦WL +GL ◦W −GL ◦WL � Z. (2.19)

2.5 Chapter Summary

We have proposed a general approach to rank-constrained optimization. The approach is based

on the minimisation of the sum of the smallest (n-r) eigenvalues of a positive semidefinite matrix.

We have developed local and global methods for this problem. Notice that the optimization

method can be extended to consider non-convex functions f(θ) in problem Prco by using the

general optimization framework of Majorization-Minimization algorithms [57,61]. Areas for future

research include: missing data problems; and using the proposed approach in binary and integer

programming.



3

Factor Analysis

3.1 Introduction

In the previous chapter, we have presented a general method to solve rank-constrained optimization

problems. One problem that fits into this category is that of Factor Analysis (FA). In this chapter

we apply the method presented in chapter 2 to the problem of Factor Analysis.

In Factor Analysis a collection of N random variables are measured. It is assumed that these

variables can be decomposed in two parts: a common part describing the co-movement between the

random variables, and an idiosyncratic part describing the individual movement of each random

variable. The common part is modelled as a linear combination of r random variables, called

factors.

Factor Analysis is used in several areas including econometrics, psychometrics, psychology, among

others. One of the main issues in the existing literature on Factor Analysis is that it is gener-

ally assumed that the idiosyncratic noises are uncorrelated. This is considered a very restrictive

assumption [34, 103]. In this chapter we propose a novel approach that allows one to relax this

assumption on the idiosyncratic noise. This approach is based on the method presented in chapter

2. The results obtained by the proposed method are shown to be competitive with the results

obtained by other state-of-the-art algorithms.

As mentioned above, classical FA is based on the strict assumption that idiosyncratic movements

must be uncorrelated, i.e. the idiosyncratic covariance must be diagonal [22]. There has been a re-

newed interest in stating a more general problem that, among others things, relaxes the assumption

of diagonal idiosyncratic covariance. One approach is the “approximate factor model” [10, 103],

where (by introducing the assumption that N → ∞) “weak” correlation within the idiosyncratic

covariance is allowed. An advantage of this approach is that it provides a theoretical framework for
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use of standard FA tools when “weak” idiosyncratic correlation is present. This idea has also been

considered when the factors have dynamics, see e.g. [30]. Another approach arises by exploiting

the relationship with Principal Components Analysis (PCA). In PCA the aim is to describe most

of the variability in the output by a few variables called Principal Components. Several tools devel-

oped for PCA can be applied to FA by simply normalizing the measurements before applying the

method. In recent years, Robust PCA (RPCA) has received increasing attention. This approach,

when applied to FA, allows decomposition between the common and idiosyncratic parts, under the

assumption that the idiosyncratic covariance is “sparse”.

RPCA does not require prior information about the number of factors or about the structure of the

idiosyncratic covariance. Instead, a regularization parameter is included that manages the tradeoff

between having a low-rank description for the common part (i.e. small number of factors) and

having a small idiosyncratic part (i.e. small noise covariance, usually in terms of the `1 norm). In

the FA framework, a big disadvantage of the existing RPCA methods is that there is no guarantee

that the estimated idiosyncratic covariance matrix will be positive semidefinite. Another issue

associated with the existing RPCA methods is that prior information about the number of factors

cannot be included. This is seen as a disadvantage, since in FA, specialized methods have been

developed to choose the number of factors.

In chapter 2 we have developed a general optimization method to handle rank-constraints. We

denote this method as RCO, standing for Rank-Constrained Optimization.

In this chapter we propose an approach to Factor Analysis based on RCO. The method ensures

that: (i) the number of factors is less than or equal to a pre-specified bound; (ii) the idiosyncratic

covariance matrix is positive semidefinite; and (iii) it allows us to relax the assumption of diagonal

idiosyncratic covariance, by assuming instead that this matrix is sparse.

The layout of the remainder of the chapter is as follows: In Section 3.2 we describe the Factor

Analysis problem. Section 3.3 reviews existing methods for FA. The proposed approach is described

in Section 3.4. In Section 3.5 we present a numerical example. Conclusions are drawn in Section

3.6.

3.2 Problem description

Here, and in the sequel, we use the following notation: λi(A) denotes the i-th largest eigenvalue

of a matrix A, A � 0 denotes that the matrix A it is positive semidefinite. SN denotes the set of
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symmetric positive semidefinite matrices of size N × N . Consider a measured output yk ∈ RN ,

factors fk ∈ Rr, idiosyncratic noise vk ∈ RN , and a model:

yk = Afk + vk (3.1)

where A ∈ RN×n is the matrix of factor loadings. We assume that fk and vk are mutually

uncorrelated i.i.d. zero-mean Gaussian processes, with covariances Φ and Ψ, respectively. Thus,

the measured output yk is an i.i.d. zero-mean Gaussian process with covariance

Σ = AΦA> + Ψ (3.2)

There are two important issues that are shared by (classical) FA and PCA: (i) any rotation of the

factors will produce the same output characteristics, (ii) the components of the idiosyncratic noise

vk must be mutually uncorrelated, i.e. Ψ must be a diagonal matrix.

Remark 3.2.1. As mentioned in the introduction to this chapter, the assumption that Ψ is diagonal

is considered very restrictive [103]. Approximate factor models relax this assumption by considering

that N →∞, T →∞. Under this assumption estimators (such as principal components and quasi

maximum likelihood [34,103]) can be shown to be consistent in the presence of “weak” idiosyncratic

cross-correlation. However, it has been pointed out that when N is small, the presence of cross-

correlation could severally deteriorate the performance of such estimators [16].

3.3 Existing Methods

In this section we briefly review the more relevant existing methods for Factor Analysis.

3.3.1 Principal Components Analysis

A principal components (PC) estimator minimizes the residual sum of squares

T∑
k=1

(yk −Afk)>(yk −Afk) subject to A>A = Ir

The PC estimate Â can be computed as the eigenvectors corresponding to the r-largest eigenvalues

of S =
∑T
k=1 yky

>
k . Then f̂k = (Â>Â)−1Â>yk. This allows one to obtain the PC estimates in a

computationally efficient way. However, there is a drawback, for fixed N and when T → ∞, the

PC estimator is inconsistent unless Ψ = σ2IN .

As mentioned in the introduction, the PC estimator can be applied to FA provided the variables

are a-priori normalized, i.e. such that the variables have unitary covariance. In fact, for the special
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case when yk is normally distributed, and Ψ = σ2I the PC estimator is the maximum likelihood

estimator. Also, it has been shown that when N →∞ and T →∞, the PC estimator is consistent

even when there is “weak” cross-correlation in Ψ. For technical details see [10].

Recently, interest has turned to Robust PCA (RPCA), where the focus is to discover the structure

of Ψ by minimizing the `1 norm. An advantage of this approach is that it allows non-diagonal

Ψ. However, existing RPCA algorithms do not ensure Ψ � 0. Thus, they are unsuitable for

FA. Existing RPCA algorithms, such as [64], are based on the trace heuristic to induce the rank

constraint on AΦA>. This means that the rank of the solution cannot be specified a priori.

3.3.2 Expectation-Maximization

Expectation-Maximization (EM) algorithms [32] have been successfully applied in several areas

such as System Identification [1,31], Channel Estimation [21] and the computation of PC estimates

[95].

EM algorithms are two-step iterative procedures designed to compute the maximum likelihood

estimate. EM algorithms introduce the concept of complete data. The complete data is assumed

to be composed of a set of measured variables, Y, and a set of unmeasured variables known as the

hidden variables, H. A more detailed explanation of the EM algorithm is given in Appendix A.

In FA, the factors are a natural choice for hidden variables. An EM algorithm for FA can be

described as follows: Given a current estimate of the parameters (Â, Ψ̂) and setting Φ = Ir, then

the associated EM iteration is given by, see e.g. [118]:

E-step Compute

µfk|Y = Â>(ÂÂ> + Ψ̂)−1yk (3.3)

Σfk|Y = Ir − Â>(ÂÂ> + Ψ̂)−1Â (3.4)

where µfk|Y and Σfk|Y are the mean and covariance of the factors, conditioned on Y assuming

the estimates (Â, Ψ̂) are available.
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M-step

Â =

( N∑
k=1

ykµ
>
fk|Y

)( N∑
k=1

Σfk|Y + µfk|Yµ
>
fk|Y

)−1

(3.5)

Ψ̂ = diag∗{1/N
N∑
k=1

(yky
>
k − ykµ>fk|YÂ

> − Âµfk|Yy
>
k

+ Â(Σfk|Y + µfk|Yµ
>
fk|Y)Â>)} (3.6)

where the operator diag∗{M} returns a diagonal matrix with values equal to the values on

the diagonal of M (i.e. if L = diag∗{M}), thus Lii = Mii and Lij = 0 for i 6= j).

It is known that, under fairly general conditions, EM algorithms converge to a stationary point of

the likelihood function [32]. The proof of convergence of EM algorithms is based, loosely speaking,

on the construction of a surrogate function, such that whenever that surrogate function is improved,

the likelihood function is also improved.

3.3.3 Minimum Rank Factor Analysis

Minimum Rank Factor Analysis (MRFA) was originally proposed in [104]. This approach minimizes

the sum of the smallest N − r eigenvalues of Σ − Ψ. This can be interpreted as minimizing the

unexplained co-movement. An advantage of MRFA is that it includes the constraints Σ − Ψ � 0

and Ψ � 0. MRFA can be formulated as follows:

PMRFA : minimize
Ψ∈SN

h(Ψ) =

N∑
i=r+1

λi(Σ−Ψ)

subject to Σ−Ψ � 0

Ψ � 0

Ψ diagonal

The minimum of h(Ψ) coincides with the minimum of the function

g(Ψ,W ) = trace(W>(Σ−Ψ)) (3.7)

where W = XX> and X is an N × (N − r) column-wise orthonormal matrix [104]. Then (3.7)

can be monotonically minimized by alternating between optimizing Ψ and W [99, 104].
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3.4 Factor Analysis with Correlated Errors

In Classical FA, the idiosyncratic covariance matrix Ψ must be diagonal. As mentioned earlier,

this is considered very restrictive [34]. An alternative weaker assumption is to impose a sparsity

assumption such that most of the entries in Ψ are zero. In recent years there has been increasing

attention paid to finding sparse solutions. In this framework, `1-norm regularization has received a

lot of attention due to its ability to deliver sparse solutions subject to certain restrictions [105]. In

the related problem of PCA, `1 regularization has been applied to relax the diagonal assumption

on Ψ. However, such methods are unsuitable for FA since they do not ensure that Σ − Ψ � 0,

Ψ � 0. Also prior information about the number of factors cannot be included.

In this section we propose to drop the assumption of diagonal Ψ. Instead we assume that Ψ is

“sparse”. The problem then falls into the general class of rank-constrained optimization problems

of the type described in chapter 2. This problem can then be solved by using the RCO method by

choosing1 f(Ψ) = ‖Ψ‖1, i.e.

P3 : min
Ψ∈SN

‖Ψ‖1

subject to Σ−Ψ � 0

Ψ � 0

rank {Σ−Ψ} ≤ r

The proposed approach ensures both that Ψ � 0, and Σ−Ψ � 0.

3.5 Examples

In this section we present a simulation study illustrating the above ideas. We solve problem

P3 using the method developed in chapter 2. In the first example we show the efficacy of the

proposed local approach which solves Pinner using an alternating minimization scheme. In the

second example, we show the efficacy of the proposed global optimization method in which we

solve P4 instead of Pinner, using a branch-and-bound algorithm.

3.5.1 Local Optimization Example

Consider a model as in (3.1)-(3.2), where r = 3, N = 20, T = 100, Φ = Ir, the matrix of factor

loadings, A, is constructed as a random matrix in which each matrix entry is independent and

1Let A ∈ Rm×n, then the matrix norm ‖A‖1 is defined as ‖A‖1 = max1≤j≤n
∑m

i=1 |aij |.
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Method d(·) Self-Time [s] Total Time [s]

PCA 0.1992 0.0136 0.0136

RCO 0.1002 274.6596 274.6732

EM 0.1330 0.0062 0.0198

RPCA 0.2260 0.3803 0.3803

Table 3.1: Mean value over Nmc = 100 Monte Carlo simulations of the performance

index d(·) and the execution time (Self-time and time to get initial estimate plus self-time).

normal distributed, i.e Aij ∼ N(0, 1). The covariance matrix Ψ is constructed such that the

matrix entries satisfy Ψij = τ |i−j| with τ = 0.7. In order to adjust the signal to noise ratio we fix

the ratio ‖AA>‖F /‖Ψ‖F = 2.

We run Nmc = 100 Monte Carlo simulations, with different realizations of fk and vk, and different

factor loadings, A.

We solve problem P3 using the proposed local approach (see Algorithm 2.1), denoted as RCO. We

compare the proposed methods against PCA, the EM algorithm described in section 3.3.2, and a

RPCA method [64]. In RPCA we choose a regularization parameter such that the rank constraint

is satisfied. Table 3.1 shows the mean value, over the Monte Carlo simulations, of the execution

time and the performance index

d(Pm) = 1− trace(APmA
>)

trace(AA>)

where Pm corresponds to the orthogonal projection based on Â for the method m. We can see that

the proposed method delivers better results, but at the expense of larger computational effort.

Figure 3.1 compares the mean magnitude, denoted by Ψ̄, of Ψ̂ = Σ− ÂÂ> for all methods over the

Monte Carlo simulations. The magnitudes are shown on a logarithmic scale. Figure 3.1b shows

Ψ̄ for PCA, which produces a Ψ̄ matrix consistent with the assumption of diagonal Ψ. Note,

however, that the true Ψ̄ is not diagonal, see Figure 3.1a. Figures 3.1c shows the resultant Ψ̄

for the proposed method, RCO. We see that non-diagonal entries appear more frequently than in

other methods. Indeed, Figure 3.1c is close in appearance to the true result in Figure 3.1a. Figure

3.1d shows Ψ̄ for EM. The results seem to be consistent with the assumption that matrix Ψ is

diagonal. Again this is inconsistent with the true results in Figure 3.1a. Figure 3.1e shows Ψ̄ for

RPCA, that on average “discovers” a Ψ̄ diagonal, but on average does not properly recover the

non-diagonal entries.
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Table 3.2: Factor Analysis: Performance index and cost function value for the local and

global algorithms. The optimal value for the corresponding norm is in bold.

d(·) ‖Ψ̂‖1 time [s]

RCO 0.066 4.46 23.83

RCO-G 0.066 4.46 310.19

3.5.2 Global Optimization Example

In this section we apply the proposed global optimization method to the problem of Factor Analysis.

We denote as RCO-G the proposed approach in which we solve P4 instead of Pinner, using a branch-

and-bound algorithm, i.e. a global optimization method. Also, in RCO-G we use Theorem 2.4.2

by including contraints (2.18)-(2.19) when solving P4.

Consider a model of the form of (3.1)-(3.2), where r = 1, N = 3, T = 100, Φ = Ir. The data is

generated as in Example 3.5.1.

We compare the proposed local and global algorithms, RCO and RCO-G. In these methods, the

cost function to optimize is f(Ψ) = ‖Ψ‖1. Table 3.2 shows the results. The global optimisation

procedure reaches the global optimum with optimum cost 4.46. However, we notice that for

this case, the local optimization method RCO also achieves the global optimum. Moreover, the

execution time for RCO is less than the execution time for RCO-G.

In order show a case where the local optimization method achieves only a local optimum, we

consider a variant of the problem where the cost function to be minimized is changed to2 f(Ψ) =

‖ vec(Ψ)‖1. Table 3.3 shows the results. The global optimization algorithm RCO-G achieves the

global optimum with optimum value 9.17. However, the local algorithm RCO now does not achieve

the global optimum. Notice that the running time for RCO-G is much higher than the running

time for RCO.

In Table 3.2 and Table 3.3, the RCO-G method makes use of Theorem 2.4.2 to improve the lower

bound function ϕlb(Q). However, when Theorem 2.4.2 is not used in RCO-G the total computation

time for the results in Table 3.2 increases to 796.97[s] and the algorithm is terminated after 37361[s],

for the results in Table 3.3. Hence we conclude that Theorem 2.4.2 improves the lower bound

thereby significantly reducing the execution time for the RCO-G method.

2Let A ∈ Rm×n, then the matrix norm ‖ vec(A)‖1 is given by ‖ vec(A)‖1 =
∑m

i=1

∑n
j=1 |aij |.
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Table 3.3: Factor Analysis: Performance index and cost function value for the local and

global algorithms. The optimal value for the corresponding norm is in bold.

d(·) ‖vec(Ψ̂)‖1 time [s]

RCO 0.165 11.12 43.20

RCO-G 0.218 9.17 1768.31

3.6 Chapter Summary

We have presented a novel Factor Analysis approach that ensures that: (i) the number of factors

is less or equal to a pre-specified bound, and (ii) the idiosyncratic covariance matrix is positive

semidefinite. The method allows one to relax the common assumption in classical FA that the

idiosyncratic covariance, Ψ, is diagonal. We assume instead that Ψ is sparse and we estimate Ψ

by minimizing its `1 norm. The numerical examples have shown the efficacy of the approach. We

have shown that, in many cases, it outperforms existing methods.
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(a) True

(b) PCA (c) RCO

(d) EM (e) RPCA

Figure 3.1: Mean value over Nmc = 100 Monte Carlo simulations on the magnitude of

each entry of Ψ̄ for each method
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Rank Constraints for general

real matrices

4.1 Introduction

In this chapter we describe one of the key results of this thesis, namely the extension of Lemma

2.3.2 to general real matrices (i.e not necessarily positive semi-definite matrices).

4.2 The key result

Lemma 2.3.2 provides a convenient way to impose rank constraints for positive semi-definite ma-

trices. We next extend Lemma 2.3.2 to general matrices G ∈ Rm×n. This is described in the

following Theorem

Theorem 4.2.1. Let G ∈ Rm×n then the following expressions are equivalent

(i) rank {G} ≤ r

(ii) ∃WR ∈ Φn,r, such that GWR = 0m×n

(iii) ∃WL ∈ Φm,r, such that WLG = 0m×n.

where

Φn,r = {W ∈ Sn, 0 �W � In, trace(W ) = n− r} (4.1)

Proof. Here we provide a sketch of the proof. A more detailed proof is given in Appendix B.
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First we prove (i) =⇒ (ii). Let rank {G} ≤ r then there exist at least n− r linearly independent

vectors ui ∈ Rn such that Gui = 0. Define U = [u1, . . . , un−r] ∈ Rn×r having full column

rank. Then we can construct a orthogonal projector1, WR = UU† which satisfies the condition

rank {WR} = n − r and is such that GWR = 0 . Since WR is an orthogonal projector it also

satisfies WR ∈ Sn, 0 �WR � In and rank {WR} = trace(WR) = n− r, i.e. WR ∈ Φn,r.

The procedure to prove (i) =⇒ (iii) is similar to the proof (i) =⇒ (ii).

Next, we prove (ii) =⇒ (i). For all WR ∈ Sn such that 0 �WR � In, it is true that

trace(WR) ≤ rank {WR} (4.2)

On the other hand, by using Sylvester’s Inequality (see e.g. [12, Proposition 2.5.9]), we have that

rank {G}+ rank {WR} ≤ n+ rank {GWR} (4.3)

Then, by using (4.2), we have

rank {G}+ trace(WR) ≤ n+ rank {GWR} (4.4)

Then by using the fact that rank {GWR} = rank {0m×n} = 0 we obtain that

rank {G} ≤ n− trace(WR) (4.5)

Since WR ∈ Φn,r, we have that trace(WR) = n− r. Then

rank {G} ≤ r (4.6)

This completes the proof that (ii) =⇒ (i). The procedure to prove (iii) =⇒ (i) is similar to the

proof (ii) =⇒ (i). �

Theorem 4.2.1 is believed to be novel. As mentioned earlier, the approaches taken in [28,29] estab-

lish equivalence for the rank constraint only for semidefinite positive matrices. Because Theorem

4.2.1 treats general matrices it has the potential to impact broad classes of optimization problems.

The most closely related approach on rank-constrained optimization, is the method described

in [71,72] where the rank-nullity theorem is used to establish that, for a matrix G ∈ Rm×n,

rank {G} ≤ r ⇐⇒ there exist a full row rank matrix U ∈ R(m−r)×m such that UG = 0 (4.7)

However, requiring that U is full row rank is restrictive. For example, it may lead to the necessity

of including additional non-convex constraints, such as UU> = Im−r.

1Here † denotes the Moore-Penrose pseudoinverse, see e.g. [12, §6.1].
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Notice that one of the key steps in proving Theorem 4.2.1 is that for all W ∈ Sn such that

0 � W � I, it is true that trace(W ) ≤ rank {W}. This fact is a consequence of a stronger result

that says that in the set of interest, {W ∈ Sn|0 � W � I}, the trace function is the largest

convex function that is less than or equal to the rank function. This latter result is one of the key

underlying ingredients in the development of the nuclear norm heuristic [37, 38], for the related

problem of rank minimization.

We shall show in the sequel that Theorem 4.2.1 has a significant impact on methods for including

rank constraints into optimization problems.

Theorem 4.2.1 allows us to relax the assumption that G(θ) ∈ Sn+ by allowing us to consider general

real matrices G(θ) ∈ Rm×n. The following corollary establishes the fact that Lemma 2.3.2 is an

special case of Theorem 4.2.1.

Corollary 4.2.1. Let G ∈ Sn+ and W ∈ Sn+, then

trace(GW ) = 0 ⇐⇒ WG = 0 (4.8)

Proof. Since G and W are symmetric and positive semidefinite, then by Cholesky decomposition,

see e.g. [12, Fact 8.9.37], there exist matrices P ∈ Rn×n and Q ∈ Rn×n such that

G = PP> (4.9)

W = QQ> (4.10)

we have that

trace(GW ) = trace(PP>QQ>) (4.11)

= trace(Q>PP>Q) (4.12)

Next, we recall that for A ∈ Rm×n the Frobenius norm is defined by ‖A‖F =
√

trace(A>A), see

e.g. [12, page 547]. Then, we have

trace(Q>PP>Q) = ‖P>Q‖2F (4.13)

and from the definition of a norm we have that ‖A‖ = 0 if and only if A = 0, see e.g. [12, Definition

9.2.1.]. Then we have that

trace(GW ) = ‖P>Q‖2F = 0 =⇒ GW = 0 (4.14)

This concludes the proof for trace(GW ) = 0 =⇒ GW = 0. The proof for GW = 0 =⇒

trace(GW ) = 0 is straightforward. �
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The generality of Theorem 4.2.1 will be used in the next chapters where we apply the proposed

approach to the problems of impulse response estimation and cardinality-constrained optimization.

4.3 Chapter Summary

This Chapter has presented a novel approach to imposing rank constraints on general (i.e. not

necessarily positive semi-definite) matrices. Application of these ideas will be studied in the next

three chapters. However, it is believed that the method has wide applicability. Future research is

aimed at exploring other potential areas of application.
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Impulse Response Estimation

In chapter 4 we have presented a general method for solving rank-constrained optimization prob-

lems when the rank constraint applies to general (i.e. not necessarily positive semi-definite) ma-

trices. In this chapter we apply the method to the problem of impulse response estimation.

Impulse response estimation finds application in many areas including systems and control, econo-

metrics and acoustic and audio applications. For example, for dynamic systems, the impulse

response can be used to model a linear dynamical system. Impulse responses are also used in

acoustic and audio applications. In these applications, the impulse response is typically used to

describe the acoustic characteristic of a location, such as a concert hall, see e.g. [75].

In system identification, the complexity of the impulse response can be expressed by the McMillan

degree of the system. Moreover, the McMillan degree of the system can be related to the rank of a

particular Hankel matrix. This approach has been explored by several authors, see e.g. [8, 53, 56].

All these methods use the nuclear-norm heuristic to impose the rank constraint. However, the

nuclear-norm heuristic considers the rank-constraint as a soft constraint. In this chapter, we

handle the rank-constraint as a hard constraint. Then, the impulse response estimation problem

can be written as a rank-constrained optimization problem.

The layout of the remainder of the chapter is as follows: In Section 5.1 we describe the Impulse

Response Estimation problem. In Section 5.2 we present a numerical example. Conclusions are

drawn in Section 5.3.
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5.1 Problem description

Consider the following input-output dynamical system

yt =

∞∑
k=1

gkut−k + vt (5.1)

where vt is white noise. The McMillan degree of the system is given by the rank of the Hankel

matrix

Hs(g) =



g1 g2 g3 · · · gL−s+1

g2 g3 g4 · · · gL−s+2

g3 g4 g5 · · ·
...

...
...

...
. . . gL−1

gs gs+1 · · · gL−1 gL


(5.2)

We assume that the McMillan degree is known to be less than or equal to n. Hence to obtain an

estimate, ĝk for k = 1, 2, . . . , L, we solve the following rank-constrained optimisation problem

IRE : minimize
θ

‖Y − Φθ‖

subject to rankHs(θ) ≤ n

where

Y =
[
yt yt−1 yt−2 · · · yM

]T
(5.3)

Φ =


uTt−1 uTt−2 · · · uTt−L

uTt−2 uTt−3 · · · uTt−L−1

...
...

...
...

uTt−M uTT−M−1 · · · uTt−M−L

 (5.4)

θ =
[
g1 g2 · · · gL

]T
(5.5)

We note that IRE is a rank-constrained optimization problem where the rank constraint is applied

to a general real matrix. The problem can be solved by the methods developed in Chapter 4.

5.2 Numerical example

In this section, we present a simple example to show the efficacy of the proposed approach. The

data was generated using the following third order model,

G0(z) =
0.18(z − 0.95)

(z − 0.7)(z − 0.8)(z − 0.85)
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Table 5.1: Impulse Response Estimation: norm of the error and Singular values ofHs(θ)

for the true impulse response and for the estimates given by LS, RCO and NN methods.

True LS RCO NN

Error 1.4642 1.1938 1.2211 1.3675

σ1 1.0922 1.0857 1.0846 0.9789

σ2 0.3339 0.3914 0.3880 0.2963

σ3 0.0120 0.0507 0.0195 0.0015

σ4 0 0.0455 0 2.40 · 10−8

σ5 0 0.0254 0 0

σ6 0 0.0085 0 0

Obviously the associated impulse-response has infinitely many terms, but the McMillan degree is

3.

We are given N = 40 samples contaminated with additive white noise, vt ∼ N(0, 0.12). Within

the framework of problem IRE, we consider n = 3, L = 12, M = N − L, Φ ∈ RM×L, s = 6 and

thus Hs(θ) ∈ Rs×(L−s)+1.

We obtain an estimate of θ̂ using the proposed approach, RCO, and compare it with the Least

Squares (LS) estimate. Also we include in the comparison the Nuclear-Norm (NN) heuristic [37],

using a regularization parameter µ = 4.5/
√
L, which approximately imposes the rank constraint.

Table 5.1 shows the error norm, ‖Y −Φθ‖, and the singular values of Hs(θ) for all estimates. The

lowest error norm is, of course, achieved by the LS method since it is unconstrained. Note, however,

that the resultant model does not satisfy the known McMillan degree constraint. Also, the resultant

model may not be the best for other purposes e.g. prediction. Notice that the proposed RCO

method achieves a error norm that is less than the error norm for the NN method. The singular

values of values of Hs(θ), σi, are shown as zero if they are smaller than 10−9. Note that the method

RCO achieves the required rank constraint, whereas the rank constraint is only approximated by

the LS method. Notice that the NN method impose the rank constraint. However, there is seem

to be a loss of performance when imposing the rank constraint via nuclear-norm heuristic. This

loss of performance has been previously reported in [70].
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5.3 Chapter summary

In this brief chapter we have applied the method described in chapter 2 to the problem of impulse

response estimation. The numerical example shows the efficacy of the proposed method, and that

it is competitive with state-of-the-art methods, in particular, the one based on the nuclear-norm

heuristic.
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Cardinality-Constrained

Optimization

6.1 Introduction

In this chapter we study cardinality-constrained optimization problems. Cardinality1 constraints

are shown to be a particular case of rank constraints. In particular, we apply the general results

presented in chapter 4 to the problem of cardinality-constrained optimization.

Cardinality-constrained optimization problems are one of the possible approaches to sparsity gender

problems. There exist a large number of problems that can be formulated as cardinality-constrained

optimization problems. For example, matching pursuit and several compressive sensing problems,

see e.g. [107]. Moreover, problems such as matching pursuit with unconstrained dictionary, have

been proven to be NP-hard [107]. A traditional approach to solve cardinality-constrained problems

is via Greedy algorithms. Greedy algorithms are, in general, computationally inexpensive and,

under certain conditions, various guarantees can be established regarding the distance between the

suboptimal and optimal solution, see e.g. [107].

Within the framework of sparsity gender problems, cardinality-minimization problems have re-

ceived increasing attention , see e.g. [20], where the `1-norm heuristic is used to promote sparsity.

In this chapter we present an alternative form to represent cardinality constraints. We also present

a novel method to solve cardinality-constrained optimization problems.

The layout of the remainder of the chapter is as follows: In Section 6.2 we describe the proposed

1We use cardinality to refer to the number of non-zero elements of a vector. This is also known in the literature

as the `0 quasi-norm of a vector, see e.g. [20, 107].
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approach to cardinality-constrained optimization. Section 6.4 describes how to include group con-

straints into the cardinality-constrained optimization problem. Conclusions are drawn in Section

6.5.

6.2 An alternative representation of cardinality constraints

In this section we present an alternative representation of cardinality constraints, which is de-

rived from the results presented in chapter 4. Then, we apply this representation to express the

cardinality-constrained optimization as an optimization problem with a bilinear constraint.

Cardinality constrained optimization problems thus can be seen as a particular case of rank-

constrained optimization problems. This is done by considering that the matrix to be rank-

constrained is square and has a diagonal structure. Then, we use the general result from Theorem

4.2.1 to impose the resultant cardinality constraint.

Corollary 6.2.1. Let x ∈ Rn, then the following expressions are equivalent

(i) cardx ≤ r

(ii) there exists a w ∈ {w ∈ Rn| 0 ≤ wi ≤ 1, i = 1, . . . , n;
∑n
i=1 wi = n − r}, such that xiwi = 0

i = 1, . . . , n.

Proof. Consider the following definition G = diag {x} ∈ Rn×n, i.e.

G =



x1 0 0 · · · 0

0 x2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 xn−1 0

0 · · · 0 0 xn


(6.1)

Notice that from construction rank {G} = cardx. From Theorem 4.2.1, we have that rank {G} ≤ r,

if and only if, there exist a W ∈ {W ∈ Sn| 0 � W � In; trace(W ) = n − r} such that GW = 0.

Since G is diagonal, without loss of generality, then we can consider that W = diag {w}. This can

be easily seen by defining C = GW and considering that W is symmetric. Note that, since G is

diagonal, Cij = GiiWij and Cji = GjjWji. If Gii = Gjj = 0 for i 6= j then Wij = Wji can take

any value, including zero, and still satisfy Cij = Cji = 0. If Gii 6= 0 then Wij = Wji = 0 in order

to satisfy that Cij = 0. Finally, conditions on w are directly derived from conditions on W . �
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We note in passing that this representation of cardinality constraints is related to the results

reported in [28,84] for cardinality minimization problems.

Next, we consider the following cardinality constrained optimization problem

Pcard : minimize
x∈Rn

f(x)

subject to cardx ≤ r

We note from the above discussion that this can be formulated as a rank-constrained optimization

problem. Moreover, from corollary 6.2.1, the problem can then be formulated as a optimization

problem subject to bilinear constraints as follows

Pcardequiv : minimize
x∈Rn

f(x)

subject to xiwi = 0; i = 1, . . . , n

0 ≤ wi ≤ 1; i = 1, . . . , n

1>w = n− r

6.3 Numerical Example

In this section we present a numerical example to show the efficacy of the proposed method to

impose cardinality constraints.

6.3.1 Formulation

Assume we are given a set of noisy measurements y ∈ Rn, and a matrix A ∈ Rn×m. We assume

the data satisfies the following model

y = Ax+ v (6.2)

where v is a zero-mean Gaussian white noise with variance σ2In. Our goal is to estimate the vector

x ∈ Rm. Say that we know that the cardinality of x is less than r, but do not know which entries

are zero. The problem is of the “sparsity” gendre, see e.g. [20]. The problem can be reformulated

as the following optimisation problem

CARDI : minimize
x

‖y −Ax‖2

subject to cardx ≤ r

where r < m < n. Notice that A is a tall matrix. We recognise this as exactly the problem

discussed in section 6.2. Moreover, we know that it is a special case of the problem Pcard. Thus,



44 6. Cardinality-Constrained Optimization

we rewrite problem CARDI as the following optimization problem

CARDIeq : minimize
x∈Rm,w∈Rm

‖y −Ax‖22

subject to xiwi = 0 i = 1, · · · ,m

0 ≤ wi ≤ 1 i = 1, · · · ,m

1>w = m− r

There are many methods that could be used to solve the problem CARDIeq including the

techniques utilised in Chapter 3 and 5. To illustrate the power of the general methodology, as

opposed to the particular solution method, we will utilize an alternative method as described

below.

6.3.2 Augmented Lagrangian method

Problem Pcardequiv can be solved using a range of non-convex optimization methods. To illustrate,

we consider the constrained optimization framework of Augmented Lagrangian methods [55,86,94].

In particular, we use the Augmented Lagrangian algorithm described in [14]. We solve problem

Pcardequiv by using the Augmented Lagrangian method described in Algorithm 6.1. We denote

this method as CCO-AL, that stands for Cardinality-Constrained Optimization via Augmented

Lagrangian method.

We next briefly describe Augmented Lagrangian methods. Consider the following optimization

problem

Pal : minimize
z∈Rn

f(z)

subject to h(z) = 0

g(z) ≤ 0

z ∈ Ω

(6.3)

where f : Rn → R, h : Rn → Rne , g : Rn → Rni are continuous and Ω ⊂ Rn is compact.

The Augmented Lagrangian function will be defined by, see e.g. [13, 14]

Lρ(z, λ, µ) = f(z) +
ρ

2

(
ne∑
i=1

[
hi(z) +

λi
ρ

]2

+

ni∑
i=1

[
max(0, gi(z) +

µi
ρ

)

]2
)

(6.4)

for all z ∈ Ω, ρ > 0, λ ∈ Rne , µ ∈ Rni
+ .

The Augmented Lagrangian method is an iterative procedure that, at each iteration, given a ρk,

λkand µk optimizes Lρk(z, λk, µk) over z. The quantities ρk, λkand µk are then updated using



6.3 Numerical Example 45

simple rules. The Augmented Lagrangian methodology is guaranteed to converge to a stationary

point satisfying the Karush-Kuhn-Tucker conditions under quite general conditions, see e.g. [9].

Algorithm 6.1 shows an implementation of the Augmented Lagrangian algorithm.

Algorithm 6.1 Augmented Lagrangian algorithm [13,14].

Initialize Let λmin ≤ λmax, µmax > 0, γ > 1, 0 < τ < 1. Let λ1
i ∈ [λmin, λmax] for i = 1, . . . , ne,

µ1
i ∈ [0, µmax], i = 1, . . . , ni and ρ1 > 0. Initialize k = 1

Step1 Solve the subproblem

min
z∈Ω

Lρk(z, λk, µk) (6.5)

Step2 Test feasibility and Optimality

if

‖h(zk)‖+ ‖max{g(zk), 0}‖ ≤ εfeas (6.6)

stop algorithm declaring Solution Found.

Step3 Define

V ki = max

(
gi(z

k),−µ
k
i

ρk

)
, , i = 1, . . . , ni (6.7)

If k = 1 or

max{‖h(zk)‖∞, ‖V k‖∞} ≤ τ max{‖h(zk−1)‖∞, ‖V k−1‖∞}

define ρk+1 = ρk. Otherwise ρk+1 = γρk

Step4 Compute for i = 1, . . . , ne,j = 1, . . . , ni

λk+1
i = min{max{λmin, λki + ρk+1hi(z

k)}, λmax} (6.8)

µk+1
j = min{max{0, µkj + ρk+1gj(z

k)}, µmax} (6.9)

set k = k + 1 and go to Step1.

6.3.3 Numerical results

Consider the model (6.2), where n = 40, and σ2 = 0.1. The matrix A is generated at random. The

vector to be estimated is generated such that the cardinality of x is less than or equal to r. We
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case 1 case 2

Method ‖y −Ax‖2 time [s] ‖y −Ax‖2 time [s]

True 1.9399 - 1.9078 -

`1 2.1156 0.22 2.1368 0.24

CCO-AL 1.9165 3.16 1.83 4.93

Table 6.1: Constraining cardinality: Norm of the error of the estimates obtained by l1

minimization and RCO method.

consider two cases: case 1 in which m = 8 and r = 2; and case 2 in which m = 16 and r = 4.

We consider two methods: (i) We solve problem CARDI using the `1-norm heuristic which is

commonly used to promote sparsity, see [20]. This is implemented using the CVX parser [52].

For the `1-norm heuristic, we use as regularisation parameter µ = 1/
√
n. (ii) We solve problem

CARDIeq using the CCO-AL method described in the previous section.

Table 6.1 shows the error ‖y − Ax‖2, and the execution time for all methods. Note that the

proposed method delivers better results than those obtained via the `1-norm heuristic. The non-

zero elements obtained by both methods coincide with the non-zero elements of the “true vector”

used to generate the data, save that, in case 1, the `1-norm heuristic delivers an estimate that has

cardinality 3, where the non-zero elements include the non-zero elements of the “true vector”.

6.4 Group Constraints

The idea of group-handling in sparse representations has received increasing attention in the last

decade, see e.g. [60, 115]. These methods are based on the `1-norm heuristic. In this section

we explore the possibility of including group constraints into cardinality-constrained optimization

problems.

In problem CARDIeq, including the auxiliary variable w to manage the cardinality of the vector

x opens a new paradigm in cardinality constrained optimization problems. At the optimum, the

variable w is a binary variable having value wi = 1 in those elements corresponding to xi = 0.

Then, constraints over w can be included in the optimization problem to manage how the zero and

non-zero elements of x interact. For example, we formulate the problem by seeking to minimize

‖y − Ax‖2 subject to cardx ≤ r, with x ∈ Rm, with m and r being even numbers. Moreover, we

split the vector x in two groups: Group G1 consisting of the first m/2 elements of x, and group



6.5 Chapter Summary 47

`1 CCO-AL Group-RCO

‖y −Ax‖2 5.1799 3.5734 4.7612

Table 6.2: Group constraints: Norm of the error of the estimates obtained by `1-norm,

CCO-AL and Group-RCO methods.

G2 consisting of the last m/2 elements of x. Our assumption is that, if the ith-element of G1 is

non-zero, i.e. xi 6= 0, then the ith-element of G2 must be zero, i.e xm/2+i = 0, and vice versa. The

associated optimization problem can be formulated as

minimize
x∈Rm,w∈Rm

‖y −Ax‖22

subject to xiwi = 0 i = 1, · · · ,m

0 ≤ wi ≤ 1 i = 1, · · · ,m

1>w = m− r

wi + wj ≥ 1; i = 1, . . . ,m/2, j = m/2 + i

We denote the proposed approach as Group-RCO.

6.4.1 Numerical Example

Consider the model (6.2), where n = 30, m = 20, r = 4, σ2 = 0.5 and matrix A is generated at

random. We consider the CCO-AL method, the Group-RCO method described above, and the

`1-norm heuristic with regularization parameter µ = 10/
√
n. The resulting `1-norm estimate have

cardinality r = 4. Table 6.2 shows the error ‖y −Ax‖2 for all methods. Notice that the CCO-AL,

and Group-RCO methods deliver better results than the `1-norm heuristic. Table 6.3 shows the

estimates obtained by all methods. Notice that the results obtained by CCO-AL are not required

to satisfy the group constraints. This is clear by noticing that the 10th and 20th-elements of

the estimate have non-zero values. However, Group-RCO satisfies the group constraints, and the

resulting estimate have cardinality 2 ≤ r = 4.

6.5 Chapter Summary

In this chapter we have extended the results of chapter 2 to the problem of cardinality-constrained

optimization. We have developed an algorithm to solve cardinality-constrained optimization prob-

lems. This algorithm is based on the general framework for constrained optimization of Aug-

mented Lagrangian methods. We have also explored the ability to include group constraints into
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element index `1 CCO-AL Group-RCO

1 0 0 0

2 1.1688 1.6562 1.5501

3 0 0 0

4 0 0 0

5 0 0 0

6 0 -0.2208 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0.8980 1.3535 1.2382

11 0 0 0

12 -0.0797 0 0

13 0 0 0

14 0 0 0

15 0 0 0

16 0 0 0

17 0 0 0

18 0 0 0

19 0 0 0

20 0.0443 0.5739 0

Table 6.3: Group constraints: Estimates obtained by `1-norm, CCO-AL and Group-RCO

methods.
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cardinality-constrained optimization problems.
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7

Model Predictive Control with

sparse-input constraints

In chapter 6 we have presented a general method for solving cardinality-constrained optimization

problems. In this chapter we apply the method described in chapter 6 to Model Predictive Control

(MPC).

Controlling a process using a reduced number of active inputs has several advantages. For example,

it can be used to reduce the energy consumption of self-powered devices due to transmission, or

to reduce network bandwidth usage. In this chapter we propose the design of quadratic MPC

controllers subject to cardinality constraints on each control horizon.

A stability analysis of the resultant solution is beyond the scope of the current thesis. The complete

problem formulation and an initial stability analysis can be found in [3].

The layout of the remainder of the chapter is as follows: In Section 7.1 we describe the problem.

In Section 7.2 we present a simulation study. Conclusions are drawn in Section 7.3.

7.1 Problem description

Consider the following discrete-time linear time-invariant system:

xk+1 = Axk +Buk, (7.1)

where xk ∈ Rn is the system state , uk ∈ Rm is the control input vector. The pair (A,B) is

assumed to be stabilizable where the matrix A is not necessarily Schur stable.

We are seeking to control the system (7.1) with a reduced number of active inputs, γ ≤ m. To this
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end, one needs to design a controller which can provide the best possible actuation considering

only γ active inputs while the remaining γ −m inactive inputs take a null value.

We use σ ∈ Rm to denote a binary vector which indicates the active and inactive inputs, i.e., the

i− th component of σ is given by:

σi =

 1 if ui is active,

0 otherwise (ui = 0),
(7.2)

for all i ∈ {1, . . . ,m}. Thus, the number of non-zero elements of vector σ is |σ|0 = γ.

To formulate the MPC optimal problem, we consider the following quadratic cost function

VN (x, ~u) = x̂>NPx̂N +

N−1∑
j=0

x̂>j Qx̂j + û>j Rûj (7.3)

where x̂ and û stand for the predicted values of the system state and input respectively, and N is

the prediction horizon. The matrices Q, R, and P are assumed to be positive definite. The vector

~u contains the tentative control action over the prediction horizon, i.e.,

~u =
[
û>0 , . . . , û

>
N−1

]> ∈ RNm,

The optimization problem of interest for the current state, xk = x, is given as

PMPC : V opN (x) = minimize
~u∈RNm

{VN (x, ~u)} (7.4)

subject to x̂j+1 = Ax̂j +Bûj , (7.5)

card ûj ≤ γ, (7.6)

x̂N ∈ Xf (7.7)

for all j ∈ {0, . . . , N − 1}, where x̂0 = xk and γ ≤ m. Note that constraint (7.6) encompasses

the cardinality constraint along the prediction horizon, while (7.7) is a terminal constraint, with a

terminal region given by

Xf = {x ∈ Rn : |x| ≤ b} , (7.8)

with b ∈ R≥0.

Consequently, the optimal input sequence, ~uop(x), is the one which minimizes the cost function,

~uop(x) = arg

{
min
~u∈U(x)

VN (x, ~u)

}
. (7.9)

where the set U(x) ∈ RNm contains all possible input vector sequences, ~u, which satisfy the

constraints (7.6)-(7.7).
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Figure 7.1: Vector of active inputs in the horizon.

The resulting optimal solution is the input control sequence

~uop(x) =
[
(ûop0 )>, . . . , (ûopN−1)>

]>
, (7.10)

while the resulting optimal state sequence is

~xop(x) =
[
x>, (x̂op1 )>, . . . , (x̂opN )>

]>
.

Additionally, for this particular problem, we also obtain the resulting optimal active input sequence,

given by

~σop(x) =
[
(σop0 )>, . . . , (σopN−1)>

]>
. (7.11)

Notice that the elements of σop(x) may differ from each other. However, cardσopj ≤ γ for all

j ∈ {0, . . . , N − 1}. For example, if N = 4, m = 3, and γ = 2, a possible ~σop(x) is shown in Figure

7.1.

We also denote the domain of the cost function VN via

XN = {x ∈ Rn : U(x) 6= 0}. (7.12)

Finally, we use a receding horizon technique i.e. only the first element of ~uop(x) is applied to the

system at each sampling instant. The solution of the optimal problem, PMPC(x) in (7.4), yields

the MPC control law, κN (·) : XN → Rm,

κN (x) = ûop0 . (7.13)

The resulting MPC loop can be represented via

xk+1 = Axk +BκN (xk). (7.14)
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The proposed method described in chapter 6 is used to impose the cardinality constraint. Denote

as ûji to the tentative control action at the j-th instant in the horizon, for the i-th input, similarly

we define the auxiliary variables wji with j ∈ {0, . . . , N − 1}, and i ∈ {1, . . . ,m}. Then, problem

PMPC can be reformulated as follows

PMPCEQ : V opN (x) = minimize
~u∈RNm

{VN (x, ~u)}

subject to x̂j+1 = Ax̂j +Bûj ,

x̂N ∈ Xf

ûjiwji = 0,

0 ≤ wji ≤ 1,

m∑
`=1

wj` = m− γ,

for all j ∈ {0, . . . , N − 1} and for all i ∈ {1, . . . ,m}. Notice that constraints
∑m
`=1 wj` = m− γ for

all j ∈ {0, . . . , N − 1}, correspond to cardinality constraints imposed on groups. This is another

example of group constraints discussed in section 6.4.

7.2 Numerical Example

In this section we verify the performance of the proposed approach via a simulation study.

We consider a linear system (7.1) such that x ∈ R4, u ∈ R3, and

A =


0.6122 0.2349 −0.0021 0.1362

−0.0366 0.7871 0.2047 −0.1814

−0.1941 −0.1420 1.1499 −0.2657

−0.1864 0.0280 0.2942 1.2742

 , (7.15)

B =


−0.0151 0.2338 0.2710

−0.3032 −0.1504 0.0087

0.8390 −0.0009 −0.3200

−0.0878 −0.4431 0.0016

 . (7.16)

Notice that matrix A has 2 unstable eigenvalues.

To design the quadratic cost function, VN (x, ~u), we choose Q = I4×4, R = diag{1, 1, 5}, and a
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prediction horizon of N = 4. Then, the matrix P is obtained by solving a Riccati equation, yielding

P =


1.6324 0.2733 −0.4011 −0.3720

0.2733 2.5520 0.7596 −1.1004

−0.4011 0.7596 3.2467 0.3548

−0.3720 −1.1004 0.3548 7.0326

 . (7.17)

By prior experimentation we know that it is possible to stabilize the system using only γ = 2

inputs, provided we choose σ =
[
1 1 0

]>
.

We are going to analyze the implementation of two MPC controllers. The first one computes the

optimal control actions using a time-invariant cardinality constraint, γ = 2 (which ensures stability

of the control loop). For the second controller, we let γ be time variant, i.e., γ(k) can change with

k. We then compute the optimal controller that guarantee stability with the minimum number of

active inputs.

Figure 7.2 shows that the controller using γ = 2 stabilizes the system quicker than the one with

γ(k) at the expense of using more active inputs at each instant (see Figure 7.3 and Figure 7.4).

This fact reveals the trade-off between control performances and number of active control inputs:

the control performance gets worse when the number of active control inputs is lower and vice

versa. Note that, at some instants, the system can be stabilized even with cardu(k) = 0.

Although the controller with γ(k) uses less active control inputs, in general, the computational

effort (and hence the calculation time) might be higher than for the case with a fixed γ because

more combinations have to be explored. This makes the choice of the time-invariant γ a good

trade-off between performance, usage of non-zero control inputs and on-line computational effort.
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7.3 Chapter Summary

In this brief chapter, we have applied the approach developed in chapter 6 to model predictive

control. The formulated model predictive control algorithm takes advantage of two of the main

features of the method developed in chapter 6, namely, the ability to handle cardinality constraints,

and the ability to handle group constraints.
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Figure 7.2: State stabilization x(k) for γ = 2 and variable γ(k).
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Figure 7.3: σ(k) and card{u(k)} for γ = 2.
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Figure 7.4: σ(k) and card{u(k)} for minimum γ(k).
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Estimation-Error Quantification





8

Finite Data Estimation

8.1 Introduction

In this chapter we deal with the problem of estimation-error quantification for finite data. Finite

data estimation arises in many practical problems. A well-known example is parameter estimation

when only a small amount of data is available. Most of the methods used in practice for this

problem provide error quantification. However, such error quantification typically depends upon

asymptotic results. In this chapter, we propose an alternative approach to finite data estimation.

The new approach provides a solution to the error quantification problem.

In some cases Prediction Error Methods (PEM) can be used to solve finite data parameter esti-

mation [66]. These methods perform well but suffer from conceptual problems. For example, the

usual quantification of the accuracy in PEM depends upon asymptotic results. This has motivated

several authors to develop alternative schemes for parameter estimation with finite data [18, 113].

Of course, full Bayesian methods also provide a solution to the finite data problem but these suffer

from other difficulties as we will discuss below.

The estimation procedure can be given two interpretations. If one adopts probabilistic models,

then the estimation procedure can be interpreted as computing the Maximum A Posteriori (MAP)

estimate. Alternatively, one can interpret the estimation procedure as simply a procedure for

comparing a measured trajectory with a model trajectory via a suitable cost function. Whichever

interpretation one uses, the estimation procedure requires that one use optimization for its solution.

A fundamental issue of relevance to the current chapter is that only a point estimate is obtained.

In the sequel we adopt the probabilistic interpretation.

By way of contrast, Bayesian estimation computes the complete a-posteriori distribution. However,

Bayesian estimation also suffers from disadvantages. In particular, Bayesian estimation is generally
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computationally expensive. Moreover, the size of the problem typically grows exponentially with

the number of data points. Hence some form of simplification is usually required. In practice, this

is achieved by using approximate schemes e.g. deterministic gridding algorithms, particle filtering

or other resampling methods [25].

Here, we propose an approach to finite data estimation that combines MAP and Bayesian tech-

niques. Importantly, it also provides a possible solution to the error quantification problem.

The layout of the remainder of the chapter is as follows: In section 8.2, we present the problem

formulation. In section 8.3 we outline the combined MAP-Bayesian scheme for finite data problems.

In section 8.4, we present a numerical example. Conclusions are presented in section 8.5.

8.2 Problem formulation

Consider a nonlinear system described by a state space model of the form

xt+1 = f(xt) + wt (8.1)

yt = h(xt) + vt (8.2)

where xt ∈ Rnx , yt ∈ Rny . For simplicity1 we assume thatwt
vt

 ∼ N
Q 0

0 R

 (8.3)

Our goal is to estimate the states x0, . . . , xN , given observations y1, . . . , yN . We also assume that

a prior distribution is available for x0.

Two general approaches for solving this problem are MAP and Bayesian estimation. These two

approaches are based on the common element of the a-posteriori distribution. An expression for

the a-posteriori distribution is given in Lemma 8.2.1 below:.

Lemma 8.2.1. For the system (8.1)-(8.2), the a-posteriori distribution for the states x0, . . . , xN ,

given the observations y1, . . . , yN is

p(x0, x1, . . . , xN |y1, . . . , yN )

∝
N∏
i=1

p(xi|xi−1)p(yi|xi)p(x0) (8.4)

where ∝ denotes “modulo a normalizing constant”.

1The extension to more general models and noise distributions presents no additional conceptual difficulties.
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Proof. From Bayes rule,

p(x0, x1, . . . , xN |y0, . . . , yN−1)

∝p(y1, . . . , yN |x0, . . . , xN )p(x0, . . . , xN ) (8.5)

The results then follows by using the Markov property inherent in (8.1),(8.2). �

MAP and Bayesian estimation can then be described as follows:

Maximum A Posteriori (MAP) estimation provides a point estimate corresponding to the maximum

of the a-posteriori distribution, i.e.

x̂0, . . . , x̂N = arg max
x0,...,xN

p(x0, x1, . . . , xN |y1, . . . , yN ) (8.6)

Note that the associated algorithm only explores the a-posteriori distribution in so far as is neces-

sary to reach the maximum.

On the other hand, Bayesian Estimation is aimed at computing (at least approximately) the

complete a-posteriori distribution as in (8.4). From this distribution, one can extract any desired

point estimate (e.g. mean, MAP, etc.). Information about the accuracy of any particular estimate

is also automatically available.

Unfortunately, the computation of the complete a-posteriori distribution is, in general, intractable.

However there are very special cases, such as unconstrained linear Gaussian problems, where the

Kalman Filter provides an exact representation of the a-posteriori distribution. Hence, for most

problems, approximate methods are typically used in practice. For example, the Extended Kalman

Filter (EKF), see e.g. [58], linearizes the non linear system, then applies standard Kalman Filter to

propagate the mean and covariance of the estimates. Alternatively, one could use a deterministic

grid on the state space. A related approach is Minimum Distortion Filtering (MDF) [45], which

uses a grid for the a-posteriori distribution that is focussed on the most likely parts of the state

space. Another commonly used method is Particle Filtering (PF) [50]. This method draws a set

of random samples from the disturbance distribution.

We see from the above discussion that MAP and Bayesian methods each have strengths and

weaknesses. Here we propose a strategy which combines MAP and Bayesian methods so as to

capitalize on the strength of each method. The core idea is explained in the next section.
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8.3 Combined MAP and Bayesian estimation

We begin by describing the algorithm in the context of finite data estimation.

Initialization: We assume that we are given the prior distribution p(x0) and data y1, . . . , yN .

Also, we assume that p(x0) is well approximated by a point distribution of the form

p(x0) =

Nx∑
s=1

p0
sδ(x0 − x̄0(s)) (8.7)

where p0
1, . . . , p

0
Nx

denote point probability masses at x̄0(1), . . . , x̄0(Nx) respectively, and Nx is the

number of points in the point distribution.

We also assume we are given a point distribution M(x) with Nx points,

M(x) =

Nx∑
l=1

qlδ(x− u(l)) (8.8)

that approximates a multivariate standard Gaussian distribution in Rnx , i.e zero mean and diagonal

unitary variance Inx
.

Our proposal has 4 components.

(i) MAP estimation: In combined MAP and Bayesian estimation, we first use MAP estimation

to obtain a single trajectory estimate x̂1, . . . , x̂N . Note that we do not produce a MAP estimate

for x0, instead we marginalize over the point distribution form of p(x0), i.e.

x̂1, . . . , x̂N

= arg max
x1,...,xN

Nx∑
s=1

p(x̄0(s), x1, . . . , xN |y1, . . . , yN ). (8.9)

The estimated trajectory x̂1, . . . , x̂N is the “most likely” trajectory in the state space. However,

there is no information about the accuracy of the estimate.

(ii) EKF for breadth estimation: The EKF provides a computationally efficient way to obtain

a measure of the covariance of the estimates. The EKF uses the standard Kalman Filter covariance

update given by

Πk|k−1 = Ak−1Πk−1|k−1A
T
k−1 +Q (8.10)

Lk = Πk|k−1C
T
k (CkΠk|k−1C

T
k +R)−1 (8.11)

Πk|k = Πk|k−1 − LkCkΠk|k−1 (8.12)
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where, in our approach, we linearize the nonlinear system about the MAP estimate x̂1, . . . , x̂N , i.e.

we use

Ak =
∂f(x)

∂xT

∣∣∣∣
x=x̂k

Ck =
∂h(x)

∂xT

∣∣∣∣
x=x̂k

(8.13)

where Π0|0 is computed as

Π0|0 =

Nx∑
s=1

p0
s(x̄0(s)− x̂0)(x̄0(s)− x̂0)T (8.14)

x̂0 =

Nx∑
s=1

p0
sx̄0(s) (8.15)

(iii) Gridding: (Here we shift and scale the point distribution (8.8)). Given the MAP estimates

x̂1, . . . , x̂N in (8.9) and the covariances Π1|1, . . . ,ΠN |N computed using (8.12), we have a Gaussian

approximation for the distribution of xk, k = 1, . . . , N . Next, for each k = 1, . . . , N we allocate a

set of Nx points by using the following affine transformation of M(x), i.e. for l = 1, . . . , Nx, we

define

x̄k(l) = x̂k + Π
1/2
k|ku(l). (8.16)

where M(x) and the corresponding points u(l) are defined by (8.8), and x̂k as in (8.9).

Remark 8.3.1. Note, that the probability masses ql, l = 1, . . . , Nx of M(x) are not used in the

method, since the probability masses are computed in step (iv). OOO

(iv) Approximate Bayesian update: The previous step provides a grid of points x̄k(l), k =

1, . . . , N , l = 1, . . . , Nx that is allocated in a part of the state space where the a-posteriori distri-

bution is concentrated. In this step, the corresponding probability masses pkl are computed. To

compute pkl we carry out a full recursive Bayesian computation over the grid. For l = 1, . . . , Nx

beginning with k = 1 compute

pkl = p(x̄k(l)|y1, . . . , yk)

= c

Nx∑
j=1

pk−1
j p(x̄k(l)|x̄k−1(j)) · p(yk|x̄k(l)) (8.17)

where c is a normalizing constant, when k is updated then pkl is computed for l = 1, . . . , Nx using

(8.17). The procedure is repeated until plN is computed for l = 1, . . . , Nx.

The proposed method is summarized in Algorithm 8.1 (see Table).
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Algorithm 8.1 Combined MAP and Bayesian estimation algorithm

• Initialize:

? Provide a point distribution for the initial state as in (8.7).

? Provide a point distribution M(x) that approximates a multivariate standard Gaussian

distribution, as in (8.8).

• Obtain a trajectory x̂1, . . . , x̂N by solving (8.9).

• Compute the covariance of x0, Π0|0, using (8.14), and then compute Π1|1, . . . ,ΠN |N using

(8.10)-(8.13).

• Allocate a grid of points, x̄k(l), k = 1, . . . , N ; l = 1, . . . , Nx on the state space by using

(8.16).

• Perform full Bayesian update over the grid of points, i.e. for k = 1, . . . , N

? for l = 1 : Nx, compute the point masses pkl by using (8.17)

? k = k + 1

• End Result: The pair (x̄k(l), pkl ) for k = 1, . . . , N ; l = 1, . . . , Nx that approximates the

a-posteriori distribution (8.4).
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Remark 8.3.2. If the prior distribution is continuous, then one can obtain p(x0) as in (8.7) by

random sampling or by use of vector quantization methods (see e.g. [43]). This step is computa-

tionally expensive but will be performed off-line before running the algorithm. The same techniques

can also be used to obtain the point distribution M(x). OOO

Remark 8.3.3. The idea behind the proposed approach is to provide additional information about

the estimate obtained by MAP estimation. However the proposed approach can also be used to

improve the accuracy information provided by other methods, such as the Extended Kalman Filter,

or the Unscented Kalman Filter, among others. OOO

Remark 8.3.4. The current exposition of the combined MAP-Bayesian estimation, suggests that

the single trajectory x̂1, . . . , x̂N is obtained by using MAP estimation. Nevertheless, the proposed

approach can also be applied when the single trajectory is obtained using other optimization based

methods. OOO

8.4 Numerical example

In this section we present a numerical example. In the example, we consider a two state batch

reactor.

Consider a well-mixed semibatch chemical reactor where the material balances for the two compo-

nents are

ċA = −2κ c2A +
Qf
V
cAf (8.18)

ċB = κ c2A +
Qf
V
cBf (8.19)

with parameter values

Qf
V

= 0.4

κ = 0.16

cAf = 1

cBf = 0

The initial conditions are cA(0) = 3 and cB(0) = 1. The measurements correspond to the total

pressure, which is the sum of the two states. The sample period is ∆ = 0.1. State estimation is

carried out assuming that x0 is normal distributed with mean [3 1]T and variance I2. We consider

that, in (8.18)-(8.19), a disturbance is introduced, which is zero-mean Gaussian distributed with

variance Q ·∆, where Q = 0.01I2.
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We are given N = 100 measurements, that are contaminated with additive zero-mean Gaussian

white noise, with variance ∆ ·R, with R = 0.01.

We compare the proposed approach (MAP-Bayes) with Nx = 13 against a Particle Filter (PF) [50]

with Npf = 100 particles, the Extended Kalman Filter (EKF) (see e.g. [58]) and an approximation

to Full Bayesian Filtering via a fine deterministic grid (FB). Also we consider a variant of our

algorithm, denoted as EKF-Bayes, where instead of using MAP to obtain the single trajectory, we

use EKF.

Figures 8.2a-8.2b show the estimated mean value obtained by each method. All the estimated mean

values are close to the mean obtained by FB, save for the mean value provided by EKF which is far

from the FB’s estimate. Note that the proposed EKF-Bayes approach provides satisfactory results,

even when EKF fails. Thus the combined strategy remedies the failure of EKF even though EKF

is used as part of the combined algorithm. The failure of EKF in the batch reactor example has

been previously reported in [54].

Figure 8.1 shows the tradeoff in the MAP-Bayes approach between performance and computational

load. This tradeoff is managed by choosing the number of points to be allocated, Nx. The perfor-

mance is measured by using the Hellinger divergence (see e.g. [63]), where we use the distribution

provided by FB as a reference. The computational load is measured by the average execution time

per sample.

8.5 Chapter Summary

This chapter has described a finite data estimation scheme which allows one to combine MAP and

Bayesian strategies. The scheme resolves a difficulty that is inherent in the usual MAP based esti-

mation schemes, namely how to quantify the accuracy of the resulting estimates. The performance

of the scheme has been compared with other commonly used schemes via a simulation example.

The example shows that the new scheme gives good performance at reasonable computational cost.

In practice, the trade-off in computational effort depends on the relative effort directed at finding

the maximum of a function and exploring the full a posteriori distribution. The appropriate bal-

ance is problem dependent. We thus encourage others to use the ideas presented here. We provide

access to preliminary software, see http://db.tt/b459SW2e.
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Figure 8.1: Trade off between computational load and performance in MAP-Bayes

method.
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Figure 8.2: Mean value of the distributions provided by each method.
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Moving Horizon Estimation

9.1 Introduction

In this chapter we apply the methods described in chapter 8 to the problem of moving horizon

estimation. Moving Horizon Estimation (MHE) is closely related to finite data estimation, since it

combines a sequence of finite data problems. MHE transforms filtering, smoothing and prediction

problems into a standard constrained optimisation problem over a finite horizon. In order to limit

the size of the problem, MHE requires that the range of data used for estimation be small. This

means that, when new data arrives, the oldest data is required to be summarized by a, so called,

“arrival cost”. However, the formulation of a statistically well posed arrival cost remains an open

problem. In this chapter, we will use the approach described in Chapter 8 for error quantification

for finite data problems, to provide an arrival cost for the MHE problem.

MHE has received increasing attention over the last decade [6, 11, 87–90, 111]. MHE has several

advantages compared with other schemes. These advantages arise due to the transformation of

the problem into a standard optimisation problem. One such advantage, is that it allows one

to incorporate constraints, for example, on the states of the system (e.g a tank cannot be more

than full or less than empty). Also, standard tools developed for Model Predictive Control can be

applied to MHE (see e.g. [33, 91]).

On the other hand, there are difficulties associated with the usual MHE scheme. For example,

the impact of past data needs to be summarized in the form of an a-priori distribution. This is

typically achieved by adding an arrival cost [11,89,111]. However, the formulation of a statistically

well posed arrival cost remains an open problem [54]. To address this problem various approximate

arrival cost strategies have been proposed, see e.g [6, 87,88,108,117]. One such strategy expresses

the arrival cost as a simple quadratic function of the difference between the current initial state,
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and the propagation of the initial state estimate from the previous horizon (see e.g. [6, 7]).

Here, we use the method developed in Chapter 8 to provide a possible solution to the entry cost

problem.

The layout of the remainder of the chapter is as follows: In section 9.2 we describe our approach

to Moving Horizon Estimation. In section 9.3, we present a numerical example. Conclusions are

presented in section 9.4.

9.2 Moving Horizon Estimation

In MHE, the estimation is carried out, online, by successively solving a sequence of finite data

problems. A new issue that arises in the MHE framework is how to incorporate the effect of the

past data (outside the current estimation interval). In the combined MAP-Bayesian framework

described in chapter 8, the a-posteriori distribution for the last state can be stored and reused at

a later time as the prior distribution.

There are several versions of the moving horizon algorithm depending upon whether estimates

are required only after each block of N samples or whether estimates are needed after each data

point is received. We refer to these cases as Block estimation and Sample-by-Sample estimation,

respectively.

(i) Block estimation. Here one simply uses the a-posteriori distribution for the final state obtained

in the previous block as prior distribution for the next block (see e.g [91, page 353])

(ii) Sample-by-Sample estimation with filtered update. Here one needs to place the a-posteriori

distribution for the final state obtained from the current block in a “rotating store”. This

scheme can be seen as N Block estimators running in parallel.

(ii) Sample-by-Sample estimation with smoothed update: in this update scheme the second value

of the previous solution is used as the initial condition.

An analysis of the different Sample-by-Sample update schemes can be found in [40]. Here, we focus

on the Block estimation scheme. However, there is no conceptual difficulties to use the proposed

approach with any of the MHE schemes described above.

Regarding the stability and convergence of the approach, the proposed MHE scheme described

here, can be seen as a special case of the algorithm described in [89]. Hence, the stability and
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convergence results presented in [89] can also be adapted to the method proposed here.

9.3 Numerical example

In this section we present a numerical example. We consider a single state water tank, with two

different radii as a function of the height.

Thus, consider a water tank having two areas: at some height, hc, the transversal area increases

by a factor of 10. We consider that the water level is measured with noise, and we are interested

in estimating the volume of water in the tank.

The volume of water in the tank is governed by

dV

dt
= Vin − Vout (9.1)

where

Vout =


πr2

0

√
2g V

πr20
if V/(πr2

0) ≤ hc

πr2
0

√
2g( V

πr21
+ hc(1− r20

r21
)) if V/(πr2

0) > hc

(9.2)

The input water volume is given by Vin = qin + w, with qin constant and w an i.i.d. Gaussian

distributed process, with zero mean and variance ∆ · Q. The sampling period is ∆ = 0.1[s]. We

measure the water level, that is related to the volume by

h =


V
πr20

if h ≤ hc

V
πr21

+ hc(1− r20
r21

) if h > hc

(9.3)

and the measurements are contaminated with an additive zero-mean Gaussian white noise, with

variance ∆ ·R. The parameter values are chosen to be

r0 = 1/π; r1 =
√

10/π hc = 1/(πr2
0);

g = 9.80665; qin = 0.447

We are given N = 100 measurements. We assume that the initial condition for the water volume

is distributed uniformly on the interval [0, 2]. We take R = 0.01 and Q = 0.1.

We compare the proposed approach (MAP-Bayes) against the Particle Filter (PF) [50], the Ex-

tended Kalman Filter (EKF) (see e.g. [58]) and an approximation to Full Bayesian Filtering via a



74 9. Moving Horizon Estimation

fine deterministic grid (FB). Also we consider a variant of our algorithm, where instead of using

MAP to obtain the single trajectory, we use EKF.

For the MAP-Bayes method we use rolling horizon length Nh = 1, and use Nx = 19 points to

approximate the standard Normal distribution. In PF, we use Npf = 100 particles. For the EKF

we approximate the initial distribution as Normal distributed with mean 1 and variance 1/3.

Table 9.1 shows the average running time per sample. We see that the proposed MAP-Bayes and

EKF-Bayes have the same order of magnitud running time. For this example EKF requires the

least computational effort.

Table 9.2 shows the Mean Square Error (MSE) (between the “true value” as computed by FB

and the given method) of the mean, mode, variance and skewness estimated for each method. For

the estimated mean, variance and skewness PF provides the best estimates, but produce a poor

estimate for the mode value. Next, EKF-Bayes produces mean, variance and skewness estimates

with the same order of magnitude error as PF. Nevertheless, the estimated mode value is much

better than that provided by PF. The MAP-Bayes method produces slightly worse estimates than

EKF-Bayes, however this could be problem dependant, since in MAP-Bayes the points are allocated

around the MAP estimate, and in the EKF-Bayes method the points are allocated around the mean

value. EKF has the poorest performance over all the methods.

MAP-Bayes PF FB EKF EKF-Bayes

Time 0.046 0.003 3.660 0.002 0.016

Table 9.1: Average running time per sample for each method.

Method mean mode variance skewness

MAP-Bayes 0.0245 0.0092 0.0029 0.5433

PF 0.0014 0.1341 0.0003 0.1545

EKF 0.1701 0.0856 0.0127 0.6341

EKF-Bayes 0.0030 0.0039 0.0004 0.3013

Table 9.2: Mean Square Error of the mean, variance, mode and skewness of each

method, compared to that obtained by Full Bayesian filtering.
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9.4 Chapter Summary

This chapter has extended the methods described in chapter 8 to Moving Horizon state estimation.

The method provides a possible solution to two difficulties that are inherent in the usual (MAP

based) Moving Horizon state estimation schemes, namely (i) how to obtain a meaningful “arrival

cost” and (ii) how to quantify the accuracy of the resulting estimates. The example shows that

the new scheme gives good performance at reasonable computational cost. We provide access to

preliminary software, see http://db.tt/b459SW2e.
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Part III

Modelling Model Uncertainty





10

Stochastic Embedding Revisited

10.1 Introduction

Chapter 8 addressed the problem of estimation-error quantification when the system belonged to

the model set. We focused on the case when only limited data was available and hence asymptotic

error quantification was inappropriate. A novel combined MAP-Bayesian strategy was developed.

In this chapter, we go a step further and address the case where the model structure is artificially

restricted so as to achieve a better bias-variance trade-off. This raises a key issue of how to describe

the inherent errors between the system and the restricted model.

The idea of uncertainty modelling has been a central theme in statistics, time series analysis,

econometrics and system identification (see e.g. [23,79,80] and the reference therein). In practice,

physical systems are more complex than models that describe the system’s behaviour (see e.g.

[23,46]). This fact is well recognized in the areas of system and control, where robustness to model

inadequacy has been a key focus.

In this chapter, we model the uncertainty as a realization of a stochastic process. We then solve

the estimation problem using the EM algorithm. The novel feature of our algorithm is that allows

us to estimate simultaneously the nominal model and associated uncertainty. The estimation is

carried out in the maximum likelihood framework.

The layout of the remainder of the chapter is as follows: In section 10.2 we review some existing

approaches to uncertainty modelling. In section 10.3 we present a description of the model of

interest and describe the proposed estimation algorithm. In section 10.4 we present numerical

examples. Finally, we draw conclusions in section 10.5.
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10.2 Traditional Approaches to uncertainty modelling

10.2.1 General Overview

The topic of uncertainty modelling has attracted significant attention in the past 20 years, where

methods such as Set Membership, Stochastic Embedding and Model Error Modelling has been

developed.

The Set membership (SM) approach (see e.g. [77, 78]), deals with the problem of “bounded but

unknown errors” in a deterministic framework. SM delivers a set of possible solutions.

On the other hand, a probabilistic framework was considered in [18, 19, 110, 112], where a set of

possible solutions can be found based on finite sample properties. Moreover, confidence sets were

found using Sub-sampling, Resampling and/or Bootstrapping techniques (see e.g. [15,35,42,106]).

In [24] it was shown that the prior information of the smoothness in the impulse response can be

used to estimate bounds on the set of possible solutions.

The methods mentioned above make few assumptions about the model error. On the other hand,

some approaches assign a model to the model error. For example, in the Model Error Modelling

(MEM) method [65], the model error description is obtained from the residuals, ε = y − ŷ. In

MEM, the model error description is considered as the sum of two terms. The first term is a

function of the input signal, and the second term is a function of a random process.

Another method that assigns a model to the model error is the Stochastic Embedding (SE) approach

(see e.g. [47–49]). In this approach the nominal model structure is embedded into a larger class

of models. In this sense, a characterization of the undermodelling is included as a realization of

a stochastic process. Moreover, in the existing literature [47–49], the estimation is carried out by

an ad-hoc two step procedure: (i) obtain a non parametric estimation of the frequency response,

then (ii) obtain a parametric model. In SE the nominal model is obtained by using Least Squares.

This limits the complexity of the models that can be handled. For a comparison between SE, SM

and MEM see [93].

The key difficulty in this area is finding a satisfactory, broad, and systematic method to describe

the model error. In this chapter we propose a systematic methodology to describe a broad class of

model uncertainties. The idea is based on the SE approach, which treats the model uncertainty as a

realization of a stochastic process. The main novelty of the work presented here is that we estimate

the nominal and uncertainty models simultaneously via a non ad-hoc Maximum Likelihood strategy
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using the Expectation-Maximization algorithm.

In the following two subsections we give further details of two existing methods for uncertainty

modelling.

10.2.2 Modelling the Residuals

In this approach [65], known in the literature as Model Error Modelling (MEM), the dynamic

system G(β, q) is first assumed to belong to a model class parametrized by β ∈ Ω, where Ω is a

constraint set in the parameter space, and q is the forward shift operator. The system output is

represented by

yt = G(β, q)ut + vt, (10.1)

where ut is the input signal, vt is additive noise and yt the measured output, t = 0, 1, . . . , N − 1.

By minimizing a cost function, such as that utilized in the Prediction Error Method (PEM) [66],

it is possible to obtain an estimate of the system parameters, denoted by β̂. This estimate is then

utilized to obtain the model errors (residues) of the estimates (see e.g. [65])

εt = yt −G(β̂, q)ut. (10.2)

Next, a model structure is assigned to the residues, such as the following

εt = F (γ, q)ut +H(γ, q)wt, (10.3)

where F (γ, q), and H(γ, q) are rational transfer function in the operator q, and parametrized

by γ ∈ Γ. The parameters of the error model in (10.3) are then estimated using an estimation

procedure such as PEM.

This procedure provides a model error description that captures the reliability of the nominal

model. This model error description can be used, for example, to generate a confidence set that

can be used for model validation or for other specific applications, such as robust control. Note,

however, that the procedure is ad-hoc since one first fits the nominal model and then one fits the

model to the residuals.

10.2.3 Stochastic Embedding

The SE [47,49] approach treats both noise and undermodelling as stochastic process.

In [49] the SE approach considers additive undermodelling. However, in [47] the undermodelling
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is described as a multiplicative error in the form G = Go(1 +G∆) where Go is the nominal model

and G∆ is the model uncertainty.

We focus on the case when the undermodelling is considered as multiplicative. The estimation

procedure described in [47] for this case is given as follows. Consider the input signal as a finite

sum of cosine functions [47]

ut =

m∑
r=1

akcos(ωrt), (10.4)

where m is the number of elements in the summation, ωr is the r-th normalized discrete frequency

given by ωr = 2πkr
N , kr ∈ {1, . . . , N}, and m ≤ N . The periodic input, ut is used to obtain

a point (non-parametric) estimate of the transfer function of the system, g(jωr), ∀r, and its

associated measurement errors at each ωr of the (not necessarily equally spaced) frequencies set

{ω1, ω2, . . . , ωm}. Then, these frequency domain estimates are used to obtain a parametric model of

g(jωr) by estimating the parameters that define it, and the parameters of the embedded stochastic

process that represent the undermodelling.

First, assuming that the measurements are obtained under steady state conditions, the sampled

output response is expressed as

yt =

m∑
r=1

arg
r(ωr) cos(ωrt)−

m∑
r=1

arg
i(ωr) sin(ωrt) + vt, (10.5)

where gr(ωr) and gi(ωr) are the real and imaginary parts of g(jωr), i.e. g(jωr) = gr(ωr) + jgi(ωr).

Also, vt is additive white noise with variance σ2
v . Next, we rewrite (10.5) in vector form as

Y = ΦG+ V, (10.6)

where

Y =
[
y1 y2 . . . yN

]T
, (10.7)

G =
[
gr(ω1) gi(ω1) . . . gr(ωm) gi(ωm)

]T
, (10.8)

Φ =


cos(ω1) sin(ω1) . . . sin(ωm)

cos(ω12) sin(ω12) . . . sin(ωm2)
...

...
. . .

...

cos(ω1N) sin(ω1N) . . . sin(ωmN)

 , (10.9)

× diag[a1,−a1, a2,−a2, . . . , am,−am], (10.10)

V =
[
v1 v2 . . . vN

]T
. (10.11)
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Then, an unbiased estimate of G is given by

Ĝ =



ĝr(ω1)

ĝi(ω1)
...

ĝr(ωm)

ĝi(ωm)


= (ΦTΦ)−1ΦTY. (10.12)

The estimate ĝ(jω) is represented in terms of a given set of basis functions b1(jω), . . . , bp(jω). We

define the vectors

Br(ω) = [br1(ω), . . . , brp(ω)]

Bi(ω) = [bi1(ω), . . . , bip(ω)]

containing the real and imaginary parts of the basis function. We denote by θ the vector containing

the coefficient of the basis functions that describe the nominal model, and by θ̄ the vector of

coefficients of the basis functions that describe the undermodelling.

Thus, we can represent the system as

Ĝ = Bθ + ΛBθ̄ + G̃, (10.13)

where

θ̄ =θ (10.14)

B =
[
Br(ω1) Bi(ω1) . . . Br(ωm) Bi(ωm)

]T
(10.15)

G̃ =
[
g̃r(ω1) g̃i(ω1) . . . g̃r(ωm) g̃i(ωm)

]T
, (10.16)

Λ = diag[λr(ω1), λi(ω1), . . . , λr(ωm), λi(ωm)]. (10.17)

The noise signals {g̃r} and {g̃i} in (10.16), are assumed to be uncorrelated white noises having

variance 2σ2
v/(a

2
rN). The random process {λr} and {λi} in (10.17) are two independent random

walk process. A different model can be considered assuming that {λr} and {λi} are two independent

integrated random walks. For more details see [47].

Remark 10.2.1. In order to incorporate the undermodelling as a multiplicative error, θ = θ̄

must be satisfied in (10.13). However, if this equality is satisfied, then the estimation problem is

difficult, because the matrix of regressors ΛB is a function of the undermodelling. For this reason,

the algorithm described in [47] was carried out in two steps. First, an estimate θ̂ of θ was obtained.

Next, the estimate of the undermodelling variance was obtained assuming that θ̄ = θ̂. This step is

clearly ad-hoc although the results in [47] suggest that useful results are obtained using this idea.

OOO
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10.3 Simultaneous Estimation of the Nominal and the Un-

certainty Models

The methods described in sections 10.2.2 and 10.2.3, both contain ad-hoc elements. In this section

we describe a procedure aimed at addressing the ad-hoc features of the two algorithms described

above.

We take the Stochastic Embedding approach [49] to describe uncertainty. Next, we develop an

estimation procedure that is based on the Expectation-Maximization algorithm. The two main

features of our proposed algorithm are: (i) it estimates both the nominal model and the uncertainty

simultaneously; and (ii) the estimation is carried out in the maximum likelihood framework.

10.3.1 Model Description

In this section we present the model description within the framework of Stochastic Embedding.

Consider the following model for the system

G(jωk) = Go(jωk)(1 +G∆(jωk)), (10.18)

and the corresponding data generating system

Y (jωk) = G(jωk)U(jωk) + V (jωk), (10.19)

where ωk = 2πk
N , Y (jωk) and U(jωk) are the Discrete Fourier Transform of the measurement and

the input signal, respectively. We assume that V (jωk) and G∆(jωk) are realizations of random

process, with probability distributions p(G∆(jωk)) and p(V (jωk)), respectively.

This representation of G∆(jωk) as a realization of a random process allows the representation of

a class of possible models characterized by Go(jωk) and p(G∆(jωk)).

Remark 10.3.1. The assumption that G∆(jωk) is a realization of a stochastic process suggests

that, to obtain representative estimates of the uncertainty, the data should reflect multiple real-

izations of uncertainty, i.e. the data should include different scenarios associated with different

uncertainty realizations. OOO

In order to simplify the notation, we denote G
(p)
∆,k , G∆(jωk)(p), G

(p)
∆ = {G∆,k}Lk=0, Y

(p)
k ,

Y (jωk)(p) and U
(p)
k , U(jωk)(p).
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10.3.2 EM-based estimation

In this section, we provide a description of the estimation algorithm that is based on the Expectation-

Maximization (EM) algorithm [32].

The EM algorithm has been used to identify different classes of dynamic systems, such as, con-

tinuous time systems using sampled-data [116], finite impulse response systems using quantized

data [68], state-space systems using incomplete data [1], channel estimation in telecommunica-

tions [21], bilinear state-space systems [44], and non-linear state-space systems [96].

The EM algorithm is an iterative two step procedure [32] where the concept of complete data is

introduced. The complete data is composed of the measured data, Y , and also an unmeasured data

set known as the hidden data, X . Then, (loosely speaking) one estimates the hidden data based on

the current parameter estimate (in the Expectation step (E-step)) and then updates the parameters

by maximizing a function that depends on the joint probability density function (pdf) of the hidden

data and the measurements evaluated at the estimated hidden data (in the Maximization step (M-

step)). A more detailed description of the EM algorithm is given in Appendix A.

Given a current estimate θ̂i ∈ Ω, where Ω is the constraint set in the parameter space, an iteration

of the EM algorithm is defined by:

E-step

Q(θ, θ̂i) = E{log p(Y,X|θ)|Y, θ̂i}. (10.20)

M-step

θ̂i+1 = arg max
θ∈Ω
Q(θ, θ̂i). (10.21)

where p(Y,X|θ) is the joint probability density function (pdf) of Y and X given θ.

Remark 10.3.2. Note that recent work related to the ideas presented below has been carried out

by by Ljung, Goodwin and Agüero (submitted for publication). OOO

For the development of the algorithm we consider G∆(jωk) as the hidden variable.

Lemma 10.3.1. Consider the system given by (10.18)-(10.19), and that G∆ ∼ p(G∆) is the hidden

variable in the EM algorithm. Also consider that the data is collected from Nexp independent

experiments, i.e. {G(p)
∆ ,Y(p)}Nexp

p=1 . Then the auxiliary function Q(θ, θ̂i) in the EM algorithm is
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given by

Q(θ, θ̂i) =

Nexp∑
p=1

E
{

log p(Y(p)|G(p)
∆ , θ)|Y(p), θ̂i

}
+

Nexp∑
p=1

E
{

log p(G
(p)
∆ |θ)|Y

(p), θ̂i

}

Proof. Following the ideas presented in [2], we rewrite (10.20) based on multiple experiments as

Q(θ, θ̂i) =E
{

log p
(
{Y(p), G

(p)
∆ }

Nexp

p=1 |θ
) ∣∣∣{Y(p)}Nexp

p=1 , θ̂i

}
. (10.22)

Assuming that the experiments are independent, then using Bayes’ theorem, we have that

Q(θ, θ̂i) =

Nexp∑
p=1

E
{

log p
(
Y(p), G

(p)
∆ |θ

) ∣∣∣Y(p), θ̂i

}
, (10.23)

and using Bayes’ theorem again we express log p(Y(p), G
(p)
∆

∣∣∣θ) as

log p(Y(p), G
(p)
∆ |θ) = log p(Y(p)|G(p)

∆ |θ) + log p(G
(p)
∆ |θ). (10.24)

Finally, substituting (10.24) into (10.23), the result (10.22) follows. �

In particular, when G
(p)
∆,k+1 and Y

(p)
k are independent, proper and Gaussian distributed [83], then,

the joint pdf of Y(p) and G
(p)
∆ is given by

p(Y(p), G
(p)
∆ |θ) =

L−1∏
k=0

p
(
G

(p)
∆,k+1, Y

(p)
k

∣∣∣G(p)
∆,k, θ

)
p(G

(p)
∆,0), (10.25)

and the joint pdf of G
(p)
∆,k+1 and Y

(p)
k is given by

p
(
G

(p)
∆,k+1, Y

(p)
k |G

(p)
∆,k, θ

)
∼ Np

µ(p)
∆,k

µ
(p)
y,k

 ;

σ2
∆,k 0

0 σ2
y,k

 (10.26)

where Np(·, ·) represents a proper Gaussian distribution, and

G
(p)
∆,0 ∼ Np(µ

(p)
∆,−1;σ2

∆,−1). (10.27)

Corollary 10.3.1. Consider that the pdf of the complete data is given by (10.25)-(10.26), and

G
(p)
∆,0 is given by (10.27). Then, the auxiliary function Q(θ, θ̂i) of the EM algorithm is given by

(excluding constant terms)
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Q(θ, θ̂i) =−Nexp

(
L−1∑
k=0

log σ2
∆,k +

L−1∑
k=0

log σ2
y,k + log σ2

∆,−1

)

−
Nexp∑
p=1

L−1∑
k=0

[
1

σ2
∆,k

·E
{

(G
(p)
∆,k+1 − µ

(p)
∆,k)(G

(p)
∆,k − µ

(p)
∆,k)∗

∣∣∣Y(p), θ̂i

}]

−
Nexp∑
p=1

L−1∑
k=0

1

σ2
y,k

E
{

(Y
(p)
k − µ(p)

y,k)(Y
(p)
k − µ(p)

y,k)∗
∣∣∣Y(p), θ̂i

}

−
Nexp∑
p=1

1

σ2
∆,−1

E
{

(G
(p)
∆,0 − µ

(p)
∆,−1)(G

(p)
∆,0 − µ

(p)
∆,−1)∗

∣∣∣Y(p), θ̂i

}
, (10.28)

where ∗ denotes the complex conjugate.

Proof. From (10.20) and (10.25) we have that

Q(θ, θ̂i)=

Nexp∑
p=1

E

{
L−1∑
k=0

log p
(
G

(p)
∆,k+1, Y

(p)
k |G

(p)
∆,k

)∣∣∣Y(p), θ̂i

}
+

Nexp∑
p=1

E
{

log p(G
(p)
∆,0)|Y(p), θ̂i

}
(10.29)

From (10.26) we deduce the following

log p
(
G

(p)
∆,k+1, Y

(p)
k |G

(p)
∆,k, θ

)
= − log π2 − log det

σ2
∆,k 0

0 σ2
y,k


−

G(p)
∆,k+1

Y
(p)
k

−
µ(p)

∆,k+1

µ
(p)
y,k

H σ2
∆,k 0

0 σ2
y,k

−1G(p)
∆,k+1

Y
(p)
k

−
µ(p)

∆,k+1

µ
(p)
y,k

 ,

= − log π2 − log σ2
∆,k − log detσ2

y,k −
1

σ2
∆,k

(G
(p)
∆,k+1 − µ

(p)
∆,k)∗(G

(p)
∆,k+1 − µ

(p)
∆,k)

− 1

σ2
y,k

(Y
(p)
k − µ(p)

y,k)∗(Y
(p)
k − µ(p)

y,k). (10.30)

In a similar way, for G
(p)
∆,0, we have:

log p(G
(p)
∆,0) = − log π − log detσ2

∆,−1 −
1

σ2
∆,−1

(G
(p)
∆,0 − µ

(p)
∆,−1)∗(G

(p)
∆,0 − µ

(p)
∆,−1), (10.31)

then substituting (10.30) and (10.31) into (10.29) we obtain (10.28). �

Once Q(θ, θ̂i) has been calculated, we can maximize it using standard optimization tools (e.g. the

Newton-Raphson method).



88 10. Stochastic Embedding Revisited

Remark 10.3.3. The conditional mean and covariances in the above expression (given Y) is

available, can be obtained by using the Kalman smoother algorithm (for more details, see e.g [1,

44, 58, 100]). OOO

Case Study

In practice, due to physical properties of real systems, typical error bounds roughly grow with the

frequency [119]. To capture this idea, the stochastic process G∆,k can be modelled as a random

walk in the frequency domain as was done in [47]. In this section, we explore this idea, and consider

that G̃∆ is a random walk in the frequency domain, with G∆(jω0) = 0. Then (10.18) and (10.19)

can be rewritten as

G
(p)
∆,k+1 = G

(p)
∆,k +W

(p)
k , (10.32)

Y
(p)
k = G

(p)
k (β)(1 +G

(p)
∆,k)U

(p)
k + V

(p)
k , (10.33)

where β ∈ Ω contains the parameters of the nominal model, and W
(p)
k and V

(p)
k are two independent

circularly symmetric white Gaussian noise sequences1, with mean and variance given by:

W (p)
k

V
(p)
k

 ∼ Np
0;

σ2
w 0

0 σ2
v

 . (10.34)

We are interested in simultaneously estimating the nominal model parameters β, and the covari-

ances γ = [ σ2
w σ2

v ]>. We denote the set of parameters to be estimated as θ = [ βT γT ]>.

Lemma 10.3.2. Consider the system given by (10.32)-(10.33), where the random noise sequences

are given by (10.34). The auxiliary function Q(p)(θ, θ̂i), for the p-th experiment, of the EM algo-

rithm is given by,

1Note that circularly symmetric Gaussian random variables have the following properties: (i) the real and

imaginary parts which are independent, and (ii) the real and imaginary parts have the same covariance matrix.
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Q(p)(θ, θ̂i) = −L log σ2
w − L log σ2

v

− 1

σ2
w

L−1∑
k=0

[
E
{
G

(p)
∆,k+1G

(p)∗
∆,k+1|Y

(p), θ̂i

}
− 2Re

{
E
{
G

(p)
∆,k+1G

(p)∗
∆,k |Y

(p), θ̂i

}}
+ E

{
G

(p)
∆,kG

(p)∗
∆,k |Y

(p), θ̂i

}]
+

1

σ2
v

L∑
k=0

[
|Y (p)
k |

2 − 2Re
{
Y

(p)
k U

(p)∗
k Gk(β)∗

}
− 2Re

{
Y

(p)
k E

{
G

(p)∗
∆,k |Y

(p), θ̂i

}
Gk(β)∗U

(p)∗
k

}
+ |Gk(β)U

(p)
k |

2
(

1 + 2Re
{

E
{
G

(p)∗
∆,k |Y

(p), θ̂i

}}
+ E

{
G

(p)
∆,kG

(p)∗
∆,k |Y

(p), θ̂i

})]
,

(10.35)

where | · | and Re {·} denote the magnitude and the real part of a complex number, respectively.

Proof. In (10.28) consider that the term inside of the first summation is

µ
(p)
∆,k = G

(p)
∆,k,

σ2
∆,k = σ2

w,

µ
(p)
y,k = Gk(β)(1 +G

(p)
∆,k)U

(p)
k ,

σ2
y,k = σ2

v ,

and G
(p)
∆,0 = 0.

We then have that

L−1∑
k=0

log σ2
∆,k =L log σ2

w,

L−1∑
k=0

log σ2
y,k =L log σ2

v .

The term in the first summation in (10.28) is, then, given by

E
{

(G
(p)
∆,k+1 − µ

(p)
∆,k)(G

(p)
∆,k − µ∆,k)(p)∗|Y(p), θ̂i

}
= E

{
G

(p)
∆,k+1G

(p)∗
∆,k+1|Y

(p), θ̂i

}
−E

{
G

(p)
∆,k+1G

(p)∗
∆,k |Y

(p), θ̂i

}
−E

{
G

(p)
∆,kG

(p)∗
∆,k+1|Y

(p), θ̂i

}
+ E

{
G

(p)
∆,kG

(p)∗
∆,k |Y

(p), θ̂i

}
,
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which is equivalent to the term inside of the first summation in (10.35). On the other hand, the

term in the second summation in (10.28) can be expanded as

E
{

(Y
(p)
k − µ(p)

y,k)(Y
(p)
k − µ(p)

y,k)∗|Y(p), θ̂i

}
= |Y (p)

k |
2 − Y (p)

k U
(p)∗
k Gk(β)∗ −Gk(β)U

(p)
k Y

(p)∗
k

− Y (p)
k E

{
G

(p)∗
∆,k |Y

(p), θ̂i

}
Gk(β)∗U

(p)∗
k

−Gk(β)E
{
G

(p)
∆,k|Y

(p), θ̂i

}
U

(p)
k Y

(p)∗
k

+ |Gk(β)U
(p)
k |

2
(

1 + 2Re
{

E
{
G

(p)∗
∆,k |Y

(p), θ̂i

}}
+ E

{
G

(p)
∆,kG

(p)∗
∆,k |Y

(p), θ̂i

})
.

Which is equivalent to the term in the second summation in (10.35). Moreover, given that G
(p)
∆,0 is

deterministic, the last term in (10.28) is not included in (10.35). �

The computation of E
{
G∆,kG

∗
∆,k|Y, θ̂i

}
, E
{
G∆,k+1G

∗
∆,k|Y, θ̂i

}
and E

{
G∆,k|Y, θ̂i

}
can be car-

ried out using the Kalman smoother (see section 10.3.3).

Remark 10.3.4. The extension of Lemma 10.3.2, for V (jωk) in (10.33) being coloured noise, can

be done by following the ideas in [85]. OOO

10.3.3 Kalman Smoother

In this section, we describe the Kalman smoother algorithm, which is necessary for the computation

of E
{
G∆,kG

∗
∆,k|Y, θ̂i

}
, E
{
G∆,k+1G

∗
∆,k|Y, θ̂i

}
and E

{
G∆,k|Y, θ̂i

}
.

Consider the following system

xt = Axt−1 +Bt + wt, (10.36)

yt = Ctxt +Dt + vt, (10.37)

where measurements of yt are available for t = 1, . . . , n. The Kalman smoother provides estimates

for xt based on the entire data sample {yt}nt=1, for t ≤ n. The Kalman smoother equations are

based on the quantities computed by the Kalman Filter. We first describe the Kalman filter, and

later we present the Kalman smoother.

We denote by

xt|s , E {xt|ys, ys−1, . . . , y1}

and by

Pt|s = E
{

(xt − xt|s)(xt − xt|s)H |ys, ys−1, . . . , y1

}
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We assume that the initial condition x0|0 has mean µ and variance P0. Then the Kalman Filter

for t = 1, . . . , n is given by (see e.g. [101])

xt|t−1 = Axt−1|t−1 +Bt, (10.38)

Pt|t−1 = APt−1|t−1A
T + Σw, (10.39)

with

xt|t = xt|t−1 +Kt(yt − Ctxt|t−1 −Dt), (10.40)

Pt|t = [I −KtCt]Pt|t−1, (10.41)

where

Kt = Pt|t−1C
H
t [CtPt|t−1C

H
t + Σv]

−1. (10.42)

Once the quantities of the Kalman filter has been computed. The Kalman smoother can be

computed for t = n, n− 1, . . . , 1 by (see e.g. [101])

xt−1|n = xt−1|t−1 + Jt(xt|n − xt|t−1), (10.43)

Pt−1|n = Pt−1|t−1 + Jt−1(Pt|n − Pt|t−1)JHt−1, (10.44)

where

Jt−1 = Pt−1|t−1A
T [Pt|t−1]−1. (10.45)

In our case, we need to compute

Mt|n = E
{

(xt − xt|n)(xt−1 − xt−1|n)H |yn, yn−1, . . . , y1

}
.

This expectation can be obtained using the quantities in the Kalman smoothing, by defining

Mn|n = [I −KnCn]APn−1|n−1, (10.46)

and for t = n, n− 1, . . . , 2

Mt−1,|n = Pt−1|t−1J
H
t−2 + Jt−1(Mt|n −APt−1|t−1)JHt−2. (10.47)

For the system (10.32)-(10.33) we have: A = 1, Bt = 0, Ct = Gt(β)Ut, and Dt = Gt(β)Ut.

10.4 Numerical examples

In this section we present two numerical examples that illustrate the performance of the proposed

method.
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10.4.1 Example 1

Consider the uncertain system defined in (10.32) and (10.33) where the nominal model is given by

G(θ, z) =
0.12

z2 − 1.3z + 0.42
, (10.48)

and where noise in the model uncertainty description has varianceσ2
w = 4 · 10−4, and the measure-

ment noise has variance σ2
v = 0.1. The input signal consists of L = 50 complex-valued samples,

{Uk}L−1
k=0 , generated as a proper Gaussian sequence with zero mean and variance σ2

u = 4.

We run Nexp = 20 different experiments each with L = 50 samples, which correspond to Nexp

realizations of the noise and the uncertainty.

Figure 10.1 shows the magnitude and phase of the frequency response of different realizations of

undermodelling, G
(i)
∆,k , and the frequency response of the estimated nominal model Gk(β̂). In

Figure 10.1a the magnitude of Gk and Gk(β̂) is shown. We can see that the estimated model

follows the characteristics of the realizations of the true system (10.48). The estimated model is

given by G(β̂, z) = 0.116/(z2 − 1.307z + 0.423), σ̂2
w = 0.0033, and σ̂2

v = 0.0997.

10.4.2 Example 2

In this example we compare the proposed approach, denoted as SE-EM, with two existing methods,

namely: Set Membership (SM) estimation (see e.g. [78]), and the Model Error Modelling (MEM)

approach of [65]. To perform this comparison we use the i4c: Identification for Control Package

[92].

Consider the following true data generating system

yt =
q−1 + 0.5q−2

1− 2.2q−1 + 2.42q−2 − 1.87q−3 + 0.7225q−4
ut + wt (10.49)

with the input ut being a PseudoRandom Binary Signal (PRBS) with clock period 5. The distur-

bance wt is chosen to be the signal registered at the Charles F. Richter Seismological Laboratory

in October, 1989 during the Loma Prieta earthquake (This signal has been made available by The

MathWorks Inc.). We assume that the signal ut is independent of the signal wt. Figure 10.2 shows

the noise-free part of the output and the disturbance signal wt.

We describe the data generating system in (10.49) by a nominal second order Output Error model,

using MEM, SM, and SE-EM.

In MEM the model error is given by a Box-Jenkins model with a Finite Impulse Response with 20
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Figure 10.1: Magnitude and Phase of the frequency response of different realizations

of undermodelling (light blue and continuous line), and the frequency response of the

estimated nominal model (red-dashed line).
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Figure 10.2: Noise-free component and noise component of the output.
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parameters for the input and the disturbance model is a fifth order rational transfer function.

For SM we use the upper bound δ = 59.098. This upper bound was found by incrementing δ by

10% each step until the initial set becomes feasible.

For SE-EM we consider two uncertainty models: (i) An uncertainty model that considers a random

walk (RW) in the frequency domain. For this uncertainty model we divide the data into Nexp =

25 parts. It is assumed the data corresponds to 25 independent experiments. (ii) The second

uncertainty model corresponds to zero-mean proper Gaussian noise in the frequency domain.

Figures 10.3a-10.3d show the estimated models with the corresponding 99% confidence uncertainty

regions (except for SM where the region corresponds to 100% certainty since this method assumes

bounded errors). Figure 10.3a shows the uncertainty description obtained by MEM. Notice that

the bounds covers the true system response. Figure 10.3b shows the uncertainty region obtained

by SM estimation. Notice that the upper bound covers the true system response. Note however,

that no lower bound is provided. Figure 10.3c shows the uncertainty region obtained by SE-EM

when the uncertainty model has constant variance over all the frequencies. The bound again cover

the true system response. However, the region designated for the true system is not as tight as for

MEM. Figure 10.3d shows the uncertainty region obtained by SE-EM when the uncertainty model

is a random walk in the frequency domain. In this case the bound again covers the true system

response. The uncertainty quantification has a less complex shape than for MEM.

Notice that the nominal models obtained in MEM (by using PEM) and SE-EM differ slightly from

each other. Also notice that SM and SE-EM deliver nominal models that are affected by the shape

of the uncertainty model.

Although it is dangerous to make general conclusions from a single experiment, we do note that,

based in this example, MEM and SE-EM (with RW undermodelling) provide tightest description of

undermodelling. Also, SE-EM has the potential advantage over MEM that the final undermodelling

region is simpler. The latter may be useful in some applications e.g. subsequent robust control

design.
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Figure 10.3: Estimated model (blue-continuous line), corresponding uncertainty 99%

confidence region (100% for SM), and the true system (red-discontinuous line) for several

methods.
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10.5 Chapter Summary

In this chapter we have presented an approach to uncertainty modelling based on Stochastic Embed-

ding. Within this framework, we have developed a new method to estimate the model uncertainty

based on the EM algorithm. The novel feature of our algorithm is that allows us to estimate the

nominal and the uncertainty models simultaneously. We have presented some numerical examples

that illustrate the benefits of the proposed approach for system identification.
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11

Conclusions

11.1 Overview

In the first part of the thesis, we have seen that including rank constraints in an optimization

problem is a difficult task. We have presented a novel approach to rank-constrained optimization.

We also have described a novel form to represent rank constraints for non-square real matrices.

Moreover, we have extended the results to the related problem of cardinality-constrained optimiza-

tion. We have shown that the proposed approach may have significant impact in a large number

of applications.

In the second part of the thesis we have studied the problem of uncertainty quantification when

the system lies in the model set but the amount of data available is small. We have developed a

novel approach to deal with parametric uncertainty under these conditions. Also, we have applied

the results to moving horizon estimation problem.

In the third part of the thesis, we have studied the problem of modelling the model uncertainty.

Our approach uses EM and allows one to estimate the nominal and the uncertainty models, simul-

taneously.

11.2 Summary of contributions by chapter

In the first part of the thesis we have addressed the problem of managing model complexity by

solving rank-constrained optimization problems.

In chapter 2 we have presented an equivalent representation for rank-constrained optimization

problems. Using this representation, we have developed a novel algorithm that satisfactorily im-

poses rank-constraints in the optimization problem. This algorithm, based on alternating convex
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optimization, provides a (provably) suboptimal solution to the rank-constrained optimization prob-

lem. We have also developed a second algorithm, based on a global optimization method, which

allows one to overcome the sub-optimality issues of the earlier approach.

In chapter 3 we have analysed the problem of factor analysis. We have proposed a novel approach

that relaxes the assumption that the idiosyncratic noises are uncorrelated. We have assumed

instead that the noise covariance matrix is sparse. The proposed method is based on the methods

developed earlier in chapter 2 and ensures that the idiosyncratic covariance matrix is positive

semidefinite. A numerical example was used to show the efficacy of the approach. It has been

shown that, in many cases, the new algorithm outperforms existing methods.

In chapter 4, we developed a new approach to describe a rank constraints for general non-square

real matrices.

In chapter 5 we have applied the method developed in chapter 4 to the problem of impulse response

estimation subject to prior knowledge of the McMillan degree of the system. The contribution of

this chapter is to develop a method that can consider the minimization of the predicted output

errors subject to a rank-constraint on the Hankel matrix.

In chapter 6 we have extended the results in chapter 4 to the problem of cardinality-constrained

optimization. We have developed a novel approach to handle cardinality constraints. The main

contributions of this method are that it can incorporate cardinality constraints as hard constraints.

We have extended this idea to handle group constraints. We have used this ideas to develop an

algorithm to solve cardinality-constrained optimization problems.

In chapter 7 we have applied the method developed in chapter 6 to model predictive control. The

contribution is to develop a method that can handle cardinality constraints on each control horizon.

In the second part of the thesis we focus on error quantification issues when the system lies in the

model set and the available amount of data is small.

In chapter 8 we have studied the problem of estimation-error quantification for finite data esti-

mation. We have developed a novel method for quantification of estimation errors. The proposed

approach allows one to quantify the accuracy of the estimates obtained by Maximum a Posteriori

methods.

In chapter 9 we have applied the method developed in chapter 8 to the problem of moving horizon

estimation. The contribution of the proposed method is that it offers a possible solution to two
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known difficulties. One is the provision of a meaningful arrival cost, and the other is the quan-

tification of the accuracy of the estimates. A numerical example shows that the proposed method

gives good performance at reasonable computational cost.

The third part of the thesis focusses on the modelling of model uncertainty when the system does

not belong to the model set.

In chapter 10 we have addressed the problem of modelling model uncertainty in dynamic models.

We have proposed a systematic methodology using EM to simultaneously estimate the nominal and

the uncertainty models. The main advantage of the proposed method over existing approaches is

that it can handle a fairly general class of nominal models whilst allowing simultaneous estimation

of the nominal and the uncertainty models. This last issue is important since the estimated nominal

model is affected by the assumptions made regarding the uncertainty model.

11.3 Future Research

The results of the thesis have the potential to be extended in several directions.

Rank-Constrained Optimization for general non-square real matrices

One of the main results in the thesis, is Theorem 4.2.1, which provides a more general representa-

tion of rank constraints. Future research could include the use of this result to incorporate rank

constraints for more general rank-constrained optimization problems.

Non-Convex Objective Functions

The global optimization method developed in the first part of the thesis could be extended to handle

non-convex objective functions. This can be done by using the general optimization framework of

Majorization-Minimization algorithms [57, 61]. Moreover, a similar objective could be pursued by

using a global optimization method based on Augmented Lagrangian methods, see for example [14].

Estimation-Error Quantification

Within the method developed in chapter 8 for estimation error quantification for finite data prob-

lems, there is no conceptual difficulties to consider distributions other than Gaussian. This idea
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could be further explored.

Identifiability for Several Uncertainty Models

One of the main contributions of chapter 10 is to develop a method that allows one to simulta-

neously estimate the nominal and uncertainty models. This leads to a related question, namely

when is it possible to uniquely recover the nominal and the uncertainty models. Future research

could include the study of structural identifiability to address this question.



A

EM algorithm

The purpose of this section is to describe one of the main tools used in estimation problems.

This tool has been utilized several times in the body of the thesis. The tool is the Expectation-

Maximization (EM) algorithm [32]. We provide a description of the EM algorithm and its under-

lying principles.

The EM algorithm has been used to identify different classes of dynamic systems, such as, con-

tinuous time systems using sampled-data [116], finite impulse response systems using quantized

systems [68], state-space systems using incomplete data [1], channel estimation in telecommunica-

tions [21], bilinear state-space systems [44], and non-linear state-space systems [96].

The EM algorithm aimed at finding the Maximum Likelihood estimate θ̂ML of a parameter vector

θ based on the measured data, Y. Thus, the EM algorithm estimate

θ̂ML = arg max
θ∈Θ

p(Y|θ) (A.1)

where p(·|θ) denotes a probability density function which is parametrized by a vector θ ∈ Rd, and

Θ ⊂ Rd denotes the feasible set.

The traditional approach to solve problem (A.1) is to exploit the fact that the cost function is

smooth enough for a gradient-based optimization algorithm [66,102]. By way of contrast, instead

of exploiting any smoothness of p(Y|θ), the EM algorithm uses the characteristic that p(Y|θ) is a

probability density function.

The EM algorithm introduces the concept of complete data. It is assumed that, the complete data

is composed of the measured data, Y, and also of an unmeasured component known as the “hidden

variables”, X .

The principles underlying the EM algorithm depend on the elementary definition of conditional
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probability p(Y|θ)p(X|Y, θ) = p(X ,Y|θ). Thus,

log p(Y|θ) = log p(X ,Y|θ)− log pθ(X|Y, θ). (A.2)

The EM algorithm approximates log p(X ,Y|θ) by an auxiliary function Q(θ, θi) as follows

log p(X ,Y|θ) ≈ Q(θ, θi) , E{log p(X ,Y|θ)|Y, θi}. (A.3)

where E{·|θi} denotes the expected value with respect to an underlying probability density function

defined by an assumption of the parameter vector being θi. We denote L(θ) , log p(Y|θ). Notice

that L(θ) can be written as

L(θ) , log p(Y|θ) = E{log p(Y|θ)|Y, θi} (A.4)

= E{log p(X ,Y|θ)|Y, θi} −E{log p(X|Y, θ)|Y, θi}

= Q(θ, θi)−H(θ, θi) (A.5)

where

H(θ, θi) , E{log p(X|Y, θ)|Y, θi} (A.6)

Moreover, using Jensen inequality it is possible to establish that H(θi, θi) ≥ H(θ, θi) [32]. Then,

using (A.5) we can establish that

Q(θ, θi) > Q(θi, θi)⇒ L(θ) > L(θi) (A.7)

Hence, any new θ that improves Q(θ, θi) must also improve L(θ).

Based on the above, the EM algorithm is an iterative two step procedure. In the, so called,

Expectation step (E-step) one calculates Q(θ, θi). Then in the, so called, Maximization step (M-

step), one updates the parameters by maximizing Q(θ, θi).

In detail, given a current estimate θ̂i ∈ Θ, one iteration of the EM algorithm is given by:

1. E-step:

Calculate: Q(θ, θ̂i) (A.8)

2. M-step:

Estimate: θ̂i+1 = arg max
θ∈Θ
Q(θ, θ̂i) (A.9)

Under quite general conditions the EM algorithm can be proven to converge to a stationary point

of the likelihood function [32,114]. In many practical applications this will be a local maximum of

the likelihood function [74].
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Detailed proof of Theorem 4.2.1

In this section we provide a detailed proof for Theorem 4.2.1. This detailed proof is based on the

use of Singular Values Decomposition (SVD).

B.1 Preliminaries

We first consider Sylvester’s inequality, for real matrices, which provides a lower bound for the

rank of the product of two matrices.

Proposition B.1.1. [12, Proposition 2.5.9] Let A ∈ Rn×m and B ∈ Rm×l. Then,

rank {A}+ rank {B} ≤ m+ rank {AB} . (B.1)

Next, we review some existing results on Singular Values Decomposition.

Definition B.1.1. [12, Definition 5.6.1.] Let A ∈ Rm×n. Then the singular values of A are the

min{m,n} nonnegative numbers σ1(A), . . . , σmin{m,n}(A), where, for all i = 1, . . . ,min{m,n},

σi(A) := λ
1/2
i (AA>) = λ

1/2
i (A>A). (B.2)

Hence,

σ1(A) ≥ · · · ≥ σmin{m,n}(A) ≥ 0. (B.3)

Note that if A ∈ Sn and is positive semidefinite, then σi(A) = λi(A) for i = 1, . . . , n.

Definition B.1.2. [12, Definition 3.1.1. xxii] Let A ∈ Rn×n. A is orthogonal if A>A = In

Theorem B.1.1. [12, Theorem 5.6.4.] Let A ∈ Rm×n, assume that A is nonzero, let c :=

rank {A}, and define B := diag {σ1(A), . . . , σc(A)}. Then, there exists orthogonal matrices U ∈



106 B. Detailed proof of Theorem 4.2.1

Rm×m and V ∈ Rn×n such that

A = U

 B 0c×(n−c)

0(m−c)×c 0(m−c)×(n−c)

V >. (B.4)

Let r ∈ N such that c ≤ r ≤ min{m,n} and consider the following block partition

A =
[
U1 U2

]
B 0c×(c−r) 0c×(n−r)

0(r−c)×(c−r) 0(r−c)×(c−r) 0(r−c)×(n−r)

0(m−r)×(c−r) 0(m−r)×(c−r) 0(m−r)×(n−r)


V >1
V >2

 . (B.5)

where U1 ∈ Rm×r, U2 ∈ Rm×(m−r), V1 ∈ Rn×r, and V2 ∈ Rn×(n−r).

Based on the block partition (B.5) of the SVD, we establish the following two Lemmas.

Lemma B.1.1. Let A ∈ Rm×n with SVD given by (B.5), and let WR := V2V
>
2 . Then, WR ∈ Rn×n

satisfies that

(i) WR � 0.

(ii) WR = W>R .

(iii) WR � In.

(iv) trace(WR) = n− r.

(v) AWR = 0m×n.

Proof. From construction, (i) is a well known result, see e.g. [12, Fact 3.7.25]. The proof of (ii)

is straightforward V2V
>
2 = (V2V

>
2 )>. To prove (iii) , consider in (B.5) that V is an orthogonal

matrix, then V >1 V1 = Ir, V
>
2 V2 = In−r, V1V

>
2 = 0n×n and

V1V
>
1 + V2V

>
2 = In (B.6)

where V1V
>
1 is positive semidefinite. Then In −WR = V1V

>
1 � 0. Next we prove (iv), by using

the trace operator in (B.6), we have that

trace(WR) = trace(In)− trace(V1V
>
1 ) (B.7)

= n− trace(V >1 V1) (B.8)

= n− trace(Ir) = n− r. (B.9)
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Finally, to prove (v), we note that by using (B.5) we have that

A WR =
[
U1 U2

]
B 0c×(c−r) 0c×(n−r)

0(r−c)×(c−r) 0(r−c)×(c−r) 0(r−c)×(n−r)

0(m−r)×(c−r) 0(m−r)×(c−r) 0(m−r)×(n−r)


V >1
V >2

V2V
>
2 (B.10)

=
[
U1 U2

]
B 0c×(c−r) 0c×(n−r)

0(r−c)×(c−r) 0(r−c)×(c−r) 0(r−c)×(n−r)

0(m−r)×(c−r) 0(m−r)×(c−r) 0(m−r)×(n−r)


V >1 V2

V >2 V2

V >2 (B.11)

=
[
U1 U2

]
B 0c×(c−r) 0c×(n−r)

0(r−c)×(c−r) 0(r−c)×(c−r) 0(r−c)×(n−r)

0(m−r)×(c−r) 0(m−r)×(c−r) 0(m−r)×(n−r)


0r×(n−r)

In−r

V >2 (B.12)

=
[
U1 U2

] 0r×(n−r)

0(m−r)×(n−r)

V >2 (B.13)

= 0m×n (B.14)

�

Lemma B.1.2. Let A ∈ Rm×n with SVD given by (B.5), and let WL := U2U
>
2 . Then, WL ∈

Rm×m satisfies that

(i) WL � 0

(ii) WL � Im

(iii) WL = W>L

(iv) trace(WL) = m− r

(v) WLA = 0m×n

Proof. The proof is similar to the proof of Lemma B.1.1. �

The following Lemma is one of the key ingredients to prove Theorem 4.2.1.

Lemma B.1.3. Let W ∈ Sn, such that 0 �W � In, then

trace(W ) ≤ rank {W} (B.15)
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Proof. Let c := rank {W}, and define B := diag {σ1(AW, . . . , σc(AW} and consider the SVD

W = U

 B 0c×(n−c)

0(m−c)×c 0(m−c)×(n−c)

U>. (B.16)

then

trace(W ) =

c∑
k=1

σi(W ) (B.17)

since W ∈ Sn and W � 0, we have that σi(W ) = λi(W ) for all i = 1, . . . , n. Furthermore, since

W � In we have that 1 ≥ λ1(W ), see [12, Lemma 8.4.1 iii], then 1 ≥ λ1(W ) ≥ · · · ≥ λc(W ) ≥

· · · ≥ λn(W ). Finally, we have that

trace(W ) =

c∑
k=1

λi(W ) ≤ c = rank {W} (B.18)

�

B.2 Proof of Theorem 4.2.1

Finally, we establish Theorem 4.2.1.

Proof. Lemma B.1.1 establishes that (i) =⇒ (ii). Lemma B.1.2 proves that (i) =⇒ (iii)

Next, we prove (ii) =⇒ (i). From Lemma B.1.3 we have that

trace(WR) ≤ rank {WR} (B.19)

On the other hand, by using Sylvester’s Inequality, we have that

rank {G}+ rank {WR} ≤ n+ rank {GWR} (B.20)

Then, by using (B.19), we have

rank {G}+ trace(WR) ≤ n+ rank {GWR} (B.21)

Then by using the fact that rank {GWR} = rank {0m×n} = 0 we obtain

rank {G} ≤ n− trace(WR) (B.22)

Since WR ∈ Φn,r, we have that trace(WR) = n− r. Then

rank {G} ≤ r. (B.23)

This completes the proof that (ii) =⇒ (i). The prove (iii) =⇒ (i) is similar to the proof of

(ii) =⇒ (i). �
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